InterSystems IRIS Data Platform 2019.2  /  InterSystems SQL Reference  /  SQL Functions

InterSystems SQL Reference
Previous section           Next section
InterSystems: The power behind what matters   

A date/time function that converts a formatted date string to a %PosixTime timestamp.
date_string A string expression to be converted to a %PosixTime timestamp. This expression may contain a date value, a time value, or a date and time value.
format Optional — A date and time format string corresponding to date_string. If omitted, defaults to DD MON YYYY HH:MI:SS.
The TO_POSIXTIME function converts date and time strings in various formats to a %PosixTime timestamp, with data type %Library.PosixTime. TO_POSIXTIME returns a %PosixTime timestamp as a calculated value based on the number of elapsed seconds from the arbitrary starting point of 1970-01-01 00:00:00, encoded as a 64-bit signed integer. The actual number of elapsed seconds (and fractional seconds) from this date is the Unix timestamp, a numeric value. InterSystems IRIS encodes the Unix timestamp to generate the %PosixTime timestamp. Because a %PosixTime timestamp value is encoded, 1970-01-01 00:00:00 is represented as 1152921504606846976. Dates prior to 1970-01-01 00:00:00 have a negative integer value. Refer to the %PosixTime data type for further details.
TO_POSIXTIME does not convert timezones; a local date and time is converted to a local %PosixTime timestamp; a UTC date and time is converted to a UTC %PosixTime timestamp.
The earliest date supported by %PosixTime is 0001-01-01 00:00:00, which has a logical value of -6979664624441081856. The last date supported is 9999-12-31 23:59:59.999999, which has a logical value of 1406323805406846975. These limits correspond to the ODBC date format display limits. These values can be further limited using the %Library.PosixTime MINVAL and MAXVAL parameters. You can use the IsValid() method to determine if a numeric value is a valid %PosixTime value.
A %PosixTime value always encodes a precision of 6 decimal digits of fractional seconds. A date_string with fewer digits of precision is zero-padded to 6 digits before %PosixTime conversion; a date_string with more than 6 digits of precision is truncated to 6 digits before %PosixTime conversion.
If date_string omits components of the timestamp, TO_POSIXTIME supplies the missing components. If both date_string and format omit the year, yyyy defaults to the current year; if only date_string omits the year, it defaults to 00, which is expanded to a four-digit year according to the year format element. If a day or month value is omitted, dd defaults to 01; mm-dd defaults to 01-01. A missing time component defaults to 00. Fractional seconds are supported, but must be explicitly specified; no fractional seconds are provided by default.
TO_POSIXTIME supports conversion of two-digit years to four digits. TO_POSIXTIME supports conversion of 12-hour clock time to 24-hour clock time. It provides range validation of date and time element values, including leap year validation. Range validation violations generate an SQLCODE -400 error.
This function can also be invoked from ObjectScript using the TOPOSIXTIME() method call:
The TO_POSIXTIME function can be used in data definition when supplying a default value to a field. For example:
TO_POSIXTIME can be used with the CREATE TABLE or ALTER TABLE ADD COLUMN statements. Only a literal value for date_string can be used in this context. For further details, refer to the CREATE TABLE command.
%PosixTime Representation
%PosixTime encodes 6 digits of precision for fractional seconds, regardless of the precision of the date_string. The ODBC and Display modes truncate trailing zeros of precision.
Related SQL Functions
Date and Time String
The date_string argument specifies a date and time string literal. If you supply a date string with no time component, TO_POSIXTIME supplies the time value 00:00:00. If you supply a time string with no date component, TO_POSIXTIME supplies the date of 01–01 (January 1) of the current year.
You can supply a date and time string of any kind for the input date_string. Each date_string character must correspond to the format string, with the following exceptions:
A format is a string of one or more format elements specified according to the following rules:
Format Elements
The following table lists the valid date format elements for the format argument:
Element Meaning
DD Two-digit day of month (01-31). Leading zeros are not required, unless format contains no date separator characters.
Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless format contains no date separator characters.
In Japanese and Chinese, a month number consists of a numeric value followed by the ideogram for “month”.
MON Abbreviated name of month, as specified by the MonthAbbr property in the current locale. By default, in English this is the first three letters of the month name. In other locales, month abbreviations may be more than three letters long and/or may not consist of the first letters of the month name. A period character is not permitted. Not case-sensitive.
MONTH Full name of the month, as specified by the MonthName property in the current locale. Not case-sensitive.
YYYY Four-digit year.
YY Last two digits of the year. The first 2 digits of a YY 2-digit year default to 19.
RR / RRRR Two-digit year to four-digit year conversion. (See below.)
DDD Day of the year. The number of days since January 1. (See below.)
HH Hour, specified as either 01–12 or 00–23, depending on whether a meridian indicator (AM or PM) is specified. Can be specified as HH12 or HH24.
MI Minute, specified as 00–59.
SS Second, specified as 00–59.
FF Fractions of a second. FF indicates that one or more fractional digits are provided; date_string can specify any number of fractional digits. TO_POSIXTIME returns exactly six digits of precision, regardless of the precision supplied in date_string.
AM / PM Meridian indicator, specifies a 12–hour clock. (See below.)
A.M. / P.M. Meridian indicator (with periods), specifies a 12–hour clock. (See below.)
A TO_POSIXTIME format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day of week name) element to match the input date_string. However, these format elements are not validated or used to determine the return value. For further details on these format elements, refer to TO_CHAR.
Two-Digit Year Conversion (RR and RRRR formats)
The RR format provides two-digit to four-digit year conversion. TO_POSIXTIME performs this conversion using the default date format (dformat -1), which uses the YearOption property of current locale, as described in $ZDATETIME.
Day of the Year (DDD format)
You can use DDD to convert the day of the year (number of days elapsed since January 1) to an actual date. The format string DDD YYYY must be paired with a corresponding date_string consisting of an integer number of days and a four-digit year. (Two-digit years must be specified as RR (not YY) when used with DDD.) The format string DDD defaults to the current year. The number of elapsed days must be a positive integer in the range 1 through 365 (366 if YYYY is a leap year). The four-digit year must be within the standard InterSystems IRIS date range: 1841 through 9999. (If you omit the year, it defaults to the current year.) The DDD and year (YYYY, RRRR, or RR) format elements can be specified in any order; a separator character between them is mandatory; this separator can be a blank space. The following example shows this use of Day of the Year:
If a format string contains both a DD and a DDD element, the DDD element is dominant. This is shown in the following example, which returns 2008-02-29 00:00:00 (not 2008-12-31 00:00:00):
TO_POSIXTIME permits you to return a date expression corresponding to a day of the year. TO_CHAR permits you to return the day of the year corresponding to a date expression.
Dates Before 1970
TO_POSIXTIME represents a date before January 1, 1970 as a negative number. %PosixTime cannot represent dates before January 1, 0001 or after December 31, 9999. Attempted to input such a date results in an SQLCODE -400 error. The TO_DATE function provides a Julian date format to represent BCE dates before January 1, 0001. Julian date conversion converts a seven-digit internal positive integer value (a Julian day count) to a display-format or ODBC-format date. Time values are not supported for Julian dates.
12-Hour Clock Time
A %PosixTime timestamp always represents time using a 24-hour clock. A date_string may represent time using a 12-hour clock or a 24-hour clock. TO_POSIXTIME assumes a 24-hour clock, unless one of the following applies:
The following Embedded SQL example converts the current local datetime to a %PosixTime value. (Note that format uses “ff” to represent any number of fractional digits; in this case, 3 digits of precision. %PosixTime encodes this as 6 digits of precision, supplying three trailing zeroes.) This example then uses the %Posix LogicalToOdbc() method to display this value as an ODBC timestamp, trimming trailing zeroes of precision:
  WRITE "local datetime in : ",tstime,!
       TO_POSIXTIME(:tstime,'yyyy-mm-dd hh:mi:ss.ff')
       INTO :ptime)
    WRITE "Posix encoded datetime: ",ptime,!
    SET ODBCout=##class(%PosixTime).LogicalToOdbc(ptime)
    WRITE "local datetime out: ",ODBCout  }
The following Embedded SQL example specifies date strings in various formats. The first one uses the default format, the others specify a format. All of these convert date_string to the timestamp value of 2018–06–29 00:00:00:
       TO_POSIXTIME('29 JUN 2018'),
       TO_POSIXTIME('2018 Jun 29','YYYY MON DD'),
       TO_POSIXTIME('JUNE 29, 2018','month dd, YYYY'),
    INTO :a,:b,:c,:d,:e,:f)
  IF SQLCODE=0 { WRITE !,a,!,b,!,c,!,d,!,e,!,f }
The following example specifies the YYYYMM date format. It does not require element separators. TO_POSIXTIME supplies the missing day and time values:
This example returns the timestamp 2018–06–01 00:00:00.
The following example specifies just the HH:MI:SS.FF time format. TO_POSIXTIME supplies the missing date value. In each case, this example returns the date of 2018–01–01 (where 2018 is the current year):
Note that fractional seconds are passed through exactly as specified, with no padding or truncation.
See Also

Previous section           Next section
Send us comments on this page
View this book as PDF   |  Download all PDFs
Copyright © 1997-2019 InterSystems Corporation, Cambridge, MA
Content Date/Time: 2019-09-19 06:56:35