
Using InterSystems Natural
Language Processing (NLP)

Version 2019.1
2019-05-23

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using InterSystems Natural Language Processing (NLP)
InterSystems IRIS Data Platform Version 2019.1 2019-05-23
Copyright © 2019 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Conceptual Overview ... 3
1.1 A Simple Use Case ... 3
1.2 What is NLP? ... 4

1.2.1 What NLP Isn’t .. 5
1.3 Logical Text Units Identified by NLP .. 5

1.3.1 Sentences .. 5
1.3.2 Entities ... 6
1.3.3 CRCs and CCs ... 7
1.3.4 Paths ... 7

1.4 Smart Indexing ... 7
1.5 Smart Matching .. 8

2 NLP Implementation .. 9
2.1 A Note on Program Examples .. 9
2.2 A Note on %Persistent Object Methods ... 10
2.3 A Note on %iKnow and %SYSTEM.iKnow .. 10
2.4 Space Requirements and NLP Globals .. 10

2.4.1 Batch Load Space Allocation ... 11
2.5 Input Data ... 11

2.5.1 File Formats ... 11
2.5.2 SQL Record Format ... 12
2.5.3 Text Normalization ... 12
2.5.4 User-defined Source Normalization ... 12

2.6 Output Structures .. 12
2.7 Constants .. 13
2.8 Error Codes .. 13

3 Domain Architect .. 15
3.1 Accessing Architect .. 15

3.1.1 Enabling a Namespace ... 15
3.2 Creating a Domain ... 16

3.2.1 Opening a Domain ... 16
3.2.2 Changing the Domain Name and Check Boxes ... 17
3.2.3 Deleting a Domain ... 17

3.3 Model Elements .. 17
3.3.1 Domain Settings ... 18
3.3.2 Metadata Fields .. 18
3.3.3 Data Locations ... 18
3.3.4 Blacklists .. 21
3.3.5 Matching .. 22

3.4 Save, Compile, and Build ... 22
3.5 Domain Explorer .. 23

3.5.1 Domain Explorer Settings .. 23
3.5.2 Listing All Concepts ... 24
3.5.3 Analyzing a Specified Entity .. 24
3.5.4 Limiting the Sources to Analyze .. 26

3.6 Indexing Results ... 27

Using InterSystems Natural Language Processing (NLP) iii

3.6.1 Domain Data .. 27
3.6.2 Manual input Data .. 27
3.6.3 Indexed Sentences .. 28
3.6.4 Concepts and CRCs ... 28

4 REST Interface ... 31
4.1 Swagger .. 31

4.1.1 Returning NLP Data Using Swagger ... 32
4.2 REST Operations .. 32

4.2.1 Domains and Configurations ... 33
4.2.2 Sources ... 33
4.2.3 Entities ... 34
4.2.4 Sentences .. 35
4.2.5 Paths and CRCs .. 35
4.2.6 Dictionaries and Matching ... 36
4.2.7 Blacklists .. 36

5 Alternatives for Creating an NLP Environment .. 39
5.1 NLP Domains ... 39

5.1.1 Defining a Domain Using DomainDefinition .. 40
5.1.2 Defining a Domain Programmatically ... 41
5.1.3 Setting Domain Parameters .. 42
5.1.4 Assigning to a Domain ... 44
5.1.5 Deleting All Data from a Domain .. 45
5.1.6 Listing All Domains ... 46
5.1.7 Renaming a Domain ... 46
5.1.8 Copying a Domain ... 46

5.2 NLP Configurations ... 47
5.2.1 Defining a Configuration ... 47
5.2.2 Setting Configuration Properties .. 47
5.2.3 Using a Configuration .. 48
5.2.4 Listing All Configurations ... 49
5.2.5 Using a Configuration to Normalize a String .. 49

5.3 NLP UserDictionary ... 50
5.3.1 UserDictionary Format ... 50
5.3.2 Defining a UserDictionary in Domain Architect ... 51
5.3.3 Defining a UserDictionary as an Object Instance .. 51
5.3.4 Defining a UserDictionary as a File ... 51

6 Loading Text Data Programmatically .. 53
6.1 Loader ... 53

6.1.1 Loader Error Logging .. 54
6.1.2 Loader Reset() .. 54

6.2 Lister ... 54
6.2.1 Initializing a Lister ... 54
6.2.2 Overriding Lister Instance Defaults ... 55
6.2.3 Lister Assigns IDs to Sources .. 55
6.2.4 Lister Defaults Example ... 56
6.2.5 Lister Parameters .. 56
6.2.6 Batch or List? ... 57

6.3 Listing and Loading Examples ... 57
6.3.1 Loading Files .. 57

iv Using InterSystems Natural Language Processing (NLP)

6.3.2 Loading SQL Records .. 58
6.3.3 Loading Elements of a Subscripted Global .. 59
6.3.4 Loading a String ... 60

6.4 Updating the Domain Contents .. 60
6.4.1 Adding Sources .. 60
6.4.2 Deleting Sources .. 61

6.5 Loading a Virtual Source .. 61
6.5.1 Deleting a Virtual Source ... 62

6.6 Copying and Re-indexing Loaded Source Data ... 63
6.6.1 UserDictionary and Copied Sources .. 64

7 Performance Considerations when Loading Texts .. 65

8 NLP Queries .. 67
8.1 Types of Queries ... 67
8.2 Queries Described in this Chapter .. 67
8.3 Query Method Parameters .. 68
8.4 Counting Sources and Sentences .. 69
8.5 Counting Entities .. 70
8.6 Listing Top Entities .. 71

8.6.1 GetTop(): Most-Frequently-Occurring Entities ... 71
8.6.2 GetTopTFIDF() and GetTopBM25() ... 72

8.7 CRC Queries .. 74
8.7.1 Listing CRCs that Contain Entities .. 74
8.7.2 Counting Sources that Contain a CRC ... 75
8.7.3 Listing Sources or Sentences that Fulfill a CRC Mask .. 76

8.8 Listing Similar Entities ... 77
8.8.1 Parts and N-grams .. 77

8.9 Listing Related Entities .. 78
8.9.1 Limiting by Position ... 79

8.10 Counting Paths ... 80
8.11 Listing Similar Sources .. 81
8.12 Summarizing a Source ... 82

8.12.1 Custom Summaries .. 84
8.13 Querying a Subset of the Sources .. 86

9 Semantic Attributes .. 87
9.1 Negation ... 88

9.1.1 Properties of Formal Negation ... 88
9.1.2 Using Negation Attributes .. 89
9.1.3 Negation Attribute Structure .. 89
9.1.4 Negation Bit Map ... 89
9.1.5 Negation and Dictionary Matching .. 90
9.1.6 Negation Examples .. 90
9.1.7 Adding Negation Terms ... 92
9.1.8 Negation Special Cases .. 92

9.2 Measurement .. 93
9.3 Time, Duration, and Frequency .. 93
9.4 Sentiment .. 94

9.4.1 Using Sentiment Attributes .. 94

10 Stemming ... 95
10.1 Configuring Stemming ... 95

Using InterSystems Natural Language Processing (NLP) v

10.1.1 Hunspell ... 96
10.2 Stem Retrieval Methods ... 96
10.3 Using Stems .. 96

11 Blacklists .. 97
11.1 Creating a Blacklist .. 97

11.1.1 Blacklists and Domains .. 98
11.2 Queries that Support Blacklists .. 99

11.2.1 Blacklist Query Example ... 100

12 Filtering Sources ... 103
12.1 Supported Filters .. 103
12.2 Filtering by the ID of the Source .. 104

12.2.1 By External Id .. 104
12.2.2 By Source Id ... 105

12.3 Filtering a Random Selection of Sources ... 105
12.4 Filtering by Number of Sentences .. 107
12.5 Filtering by Entity Match ... 108

12.5.1 Filtering by Dictionary Match .. 108
12.6 Filtering by Indexing Date Metadata .. 109
12.7 Filtering by User-defined Metadata ... 110

12.7.1 Metadata Filter Operators .. 111
12.8 Filtering by SQL Query .. 112
12.9 Filter Modes ... 113
12.10 Using GroupFilter to Combine Multiple Filters ... 113

13 Text Categorization .. 117
13.1 Text Categorization Implementation .. 117

13.1.1 Implementation Interfaces .. 118
13.2 Establishing a Training Set and a Test Set ... 118
13.3 Building a Text Classifier Programmatically ... 119

13.3.1 Create a Text Classifier .. 119
13.3.2 Populate the Terms Dictionary ... 120
13.3.3 Run the Classification Optimizer ... 121
13.3.4 Generate the Text Classifier ... 121

13.4 Testing a Text Classifier ... 121
13.4.1 Using Test Results .. 122

13.5 Building a Text Classifier Using the UI ... 123
13.5.1 Define a Data Set for the UI ... 123
13.5.2 Build a Text Classifier .. 123
13.5.3 Optimize the Text Classifier ... 125
13.5.4 Test the Text Classifier against a Test Set of Data ... 125
13.5.5 Test the Text Classifier on Uncategorized Data ... 125

13.6 Using a Text Classifier ... 126

14 Dominance and Proximity ... 127
14.1 Semantic Dominance .. 127

14.1.1 Dominance in Context .. 128
14.1.2 Concepts of Semantic Dominance ... 128
14.1.3 Semantic Dominance Examples ... 129

14.2 Semantic Proximity .. 130
14.2.1 Japanese Semantic Proximity ... 131
14.2.2 Proximity Examples ... 131

vi Using InterSystems Natural Language Processing (NLP)

15 Custom Metrics ... 133
15.1 Implementing Custom Metrics ... 133
15.2 Types and Targets ... 134
15.3 Copying Metrics ... 134

16 Smart Matching: Creating a Dictionary .. 137
16.1 Introducing Dictionary Structure and Matching .. 137

16.1.1 Terminology ... 138
16.2 Creating a Dictionary ... 138

16.2.1 Dictionaries and Domains .. 139
16.2.2 Dictionary Creation Examples ... 139
16.2.3 Defining a Format Term ... 141
16.2.4 Multiple Formats in a Dictionary Term .. 141

16.3 Listing and Copying Dictionaries .. 142
16.3.1 Listing Existing Dictionaries ... 142
16.3.2 Copying Dictionaries ... 142

16.4 Extending Dictionary Constructs ... 143

17 Smart Matching: Using a Dictionary .. 145
17.1 How Dictionary Matching Works ... 145

17.1.1 Match Scoring .. 145
17.2 Matching A String .. 146

17.2.1 Matching an Entity String .. 146
17.2.2 Matching a Sentence String ... 147

17.3 Matching Sources ... 149
17.4 Defining a Matching Profile ... 151

17.4.1 Matching Profile Properties ... 152
17.4.2 Domain Default Matching Profile .. 153

18 User Interfaces .. 155
18.1 How to Display NLP User Interfaces ... 155
18.2 Abstract Portal .. 155
18.3 Abstract Source Viewer .. 156
18.4 Loading Wizard .. 156
18.5 Domain Explorer .. 156
18.6 Basic Portal .. 156
18.7 Indexing Results ... 156
18.8 Matching Results .. 157

19 IRIS Natural Language Processing (NLP) Tools ... 159
19.1 NLP Shell Interface .. 159

19.1.1 List, Show, and Summarize Sources .. 159
19.1.2 Filter Sources ... 161

19.2 NLP Data Upgrade Utility .. 161

20 iKnow Web Services ... 163
20.1 Available Web Services .. 163
20.2 Using an NLP Web Service .. 164
20.3 Example .. 164
20.4 Comparison of NLP Web Services with Primary NLP APIs ... 165
20.5 See Also .. 166

21 KPIs and Dashboards ... 167
21.1 KPI Terminology .. 167

Using InterSystems Natural Language Processing (NLP) vii

21.2 Defining a KPI That Uses Text Analytics Query ... 168
21.3 Available KPI Filters .. 169
21.4 Overriding the KPI Properties .. 170
21.5 Example .. 170
21.6 Creating a Dashboard to Display the KPI .. 171

21.6.1 Creating Dashboards: Basics ... 171
21.6.2 Changing the Series Names ... 172
21.6.3 Configuring the Properties ... 173
21.6.4 Adding Previous Page and Next Page Buttons ... 174
21.6.5 Example Dashboard with KPI .. 175

21.7 Providing Access to Dashboards .. 176
21.8 See Also .. 176

22 Customizing NLP .. 177
22.1 Custom Lister ... 177

22.1.1 Lister name ... 178
22.1.2 SplitFullRef() and BuildFullRef() .. 178
22.1.3 Default Processor ... 178
22.1.4 Expand List .. 178

22.2 Custom Processor ... 179
22.2.1 Metadata ... 179

22.3 Custom Converter ... 179
22.3.1 %OnNew .. 179
22.3.2 Buffer String ... 180
22.3.3 Convert ... 180
22.3.4 Next Converted Part ... 180

23 Language Identification ... 181
23.1 Configuring Automatic Language Identification ... 181
23.2 Using Automatic Language Identification ... 182

23.2.1 Language Identification Queries .. 182
23.3 Overriding Automatic Language Identification ... 184
23.4 Language-Specific Issues ... 184

Appendix A: Domain Parameters .. 185

viii Using InterSystems Natural Language Processing (NLP)

List of Tables

Table I–1: Basic Domain Parameters .. 186
Table I–2: Advanced Domain Parameters ... 190

Using InterSystems Natural Language Processing (NLP) ix

About This Book

This book describes how to use the NLP semantic analysis engine to access and analyze unstructured data on InterSystems
IRIS Data Platform™. Commonly, unstructured data consists of a large number of text sources, such as a collection of
newspaper articles or a collection of doctors’ notes. You load this text data into NLP, and then use NLP to retrieve mean-
ingful information. NLP operates on data loaded from source texts; it does not modify source texts. NLP can perform
semantic analysis on texts in Dutch (nl), English (en), French (fr), German (de), Japanese (ja), Portuguese (pt), Russian
(ru), Spanish (es), Swedish (sv), and Ukrainian (uk).

The book addresses a number of topics:

• Introductory Chapters:

– A Conceptual Overview, which describes the NLP approach to unstructured data and NLP architecture. It describes
both what NLP is and what NLP is not, so that users can determine whether NLP is the best fit for their text access
application.

– NLP Implementation, which describes the implementation of NLP software in the ObjectScript environment and
describes data source considerations. Data sources can be text files, SQL records, globals, RSS feeds, or any other
type of text source.

• NLP Interfaces:

– Domain Architect, which describes the Management Portal interface for creating NLP components and populating
them with data.

– REST Interface, which describes the REST API interface for performing many NLP operations.

The operations performed through these interfaces are described in greater detail in the following chapters, which are
specific for that type of operation.

• Setting Up an NLP Environment and Loading Text Data into an NLP Domain which describe how to write programs
to get unstructured data into NLP.

• NLP Queries describes how to write programs that can be run against data loaded into NLP. Attributes allow NLP
queries to distinguish Negation and Sentiment attributes; terms flagged with these attributes affect query interpretation
of a path or sentence. Dominance and Proximity provide more sophisticated calculations for comparing text elements,
and Custom Metrics gives the user the means to extend and customize the calculations used for comparing text elements
in queries.

• Filtering Sources describes how to use various filters to limit the scope of queries to a subset of the data sources loaded
into NLP. Text Categorization describes how to automatically assign data sources to categories based on an analysis
of the contents of the source. Once assigned, this category metadata value can be used to filter sources or when
querying sources.

• The two Smart Matching chapters describe how to create a dictionary, and then how to use a dictionary to match against
data sources loaded into NLP.

• The User Interfaces chapter describes several sample GUI interfaces for retrieving information. These interfaces use
the queries, filters, and dictionaries described in the prior chapters.

• NLP Tools describes the Terminal NLP Shell interface for displaying NLP components and data. This is a useful tool,
but provides no additional NLP functionality. This chapter also describes the Data Upgrade utility for use on NLP
domains created under an earlier version of NLP.

Using InterSystems Natural Language Processing (NLP) 1

• The KPIs and Dashboards chapter describes how to use queries as data sources for KPIs (key performance indicators)
and how to display these KPIs on dashboards.

• The Web Services chapter describes using NLP with Internet data.

• The final two chapters describe advanced topics. Customizing NLP describes how to create additional NLP text pro-
cessing facilities to supplement those supplied with NLP. Language Identification describes how to work with source
texts in more than one language and with texts in languages that need special processing.

• The Domain Parameters appendix provides a comprehensive list of available domain parameters. You can set these
parameters to customize a domain, or set them for all domains systemwide.

For a detailed outline, see the Table of Contents.

The SQL Search, an SQL facility for performing text search operations uses many of the features of NLP.

Also see “Using Unstructured Data in Cubes” in Advanced Modeling for InterSystems Business Intelligence.

2 Using InterSystems Natural Language Processing (NLP)

About This Book

1
Conceptual Overview

The NLP semantic analysis engine is used to analyze unstructured data on the InterSystems IRIS Data Platform™, data
that is written as text in a human language such as English or French. By providing the ability to rapidly access and analyze
this type of data, NLP allows you to work with all of your data. NLP does not require you to have any prior knowledge of
the contents of this data, or even know what language it is written in, so long as it is one of the languages that NLP supports.

Commonly, unstructured data consists of multiple source texts, often a very large number of texts. A source text is commonly
running text divided by punctuation into sentences. A source text can be a file, a record in a SQL result set, or a web source
such as a series of blog entries.

1.1 A Simple Use Case
To see how NLP handles unstructured data, consider the following sentence:

General Motors builds their Chevrolet Volt in the Detroit-Hamtramck assembly plant.

NLP first divides a text into sentences; it then analyzes each sentence semantically. It does not need to “understand” or
look up the words in the sentence. NLP then indexes the resulting semantic entities from this sentence (normalizing letters
to lower case):

[general motors] {builds} (their) [chevrolet volt] {in} the [detroit-hamtramck assembly plant]

From the initial sentence NLP has identified the following entities:

• 3 Concepts: [general motors] [chevrolet volt] [detroit-hamtramck assembly plant].

• 2 Relations: {builds} {in}.

• 1 Path-relevant: (their). (Path-relevents are considered in path analysis, but are not indexed.

• 1 Non-relevant: the. (Non-relevants are discarded from further NLP analysis.)

Note: For the purpose of illustration, this example shows each Concept delimited by square brackets, each Relation
delimited by curly braces, and each path-relevant delimited by parentheses; within NLP such delimiter characters
are not used.

NLP assigns each entity a unique Id. NLP also identifies sequences of these entities that follow the pattern Concept-Relation-
Concept (CRC). In this example there are two CRCs:

[general motors] {builds} [chevrolet volt]
[chevrolet volt] {in} (their) [detroit-hamtramck assembly plant]

Using InterSystems Natural Language Processing (NLP) 3

NLP assigns each CRC a unique Id.

NLP also recognizes that this sentence contains a continuous sequence of entities (in this case, the sequence CRCRC). A
sequence of entities within a sentence that together express a single statement is known as a Path. The entire sentence may
be a single Path, or may contain multiple Paths. NLP assigns each Path a unique Id.

NLP has now identified the sentences in the text, the relevant Entities in each sentence, which Entities are Concepts and
which are Relations, which of these form CRC sequences, and which sequences of entities form a Path. By using these
semantic units, NLP can return many types of meaningful information about the contents of the source texts.

1.2 What is NLP?
NLP provides access to unstructured data by dividing up text into relational and associated entities and producing an index
of these entities. It divides a text into sentences, then divides each sentence into a sequence of Concepts and Relations. It
performs this operation by identifying the language of the text (for example, English), then applying the corresponding
NLP language model.

• A Relation is a word or group of words that join two Concepts by specifying a relationship between them. NLP contains
a compact language model that is able to identify the Relations in a sentence.

• A Concept is a word or group of words that is associated by a Relation. By determining what is a Relation, NLP can
identify associated Concepts. Thus the NLP analysis engine can identify Concepts semantically without “understanding”
their content.

Note: For the purpose of explanation, verbs are commonly Relations and nouns with their associated adjectives are
commonly Concepts. However, the linguistic model of Relations and Concepts is significantly more inclusive
and more sophisticated than the distinction between verbs and nouns.

Thus NLP divides a sentence into Concepts (C) and Relations (R). The language model uses a relatively small and fixed
dictionary of relationship words and a set of context rules to identify Relations. Anything not identified as a Relation is
considered a Concept. (NLP also identifies non-relevant words, such as “the” and “a”, and discards them from further
analysis.)

Relations and Concepts are collectively known as Entities. However, a Relation is almost never meaningful without an
associated Concept. For this reason, NLP entity analysis emphasizes Concepts and sequences that contain Concepts asso-
ciated by a Relation.

Because NLP analyzes text using a small and stable language model focused on identifying Relations, NLP can rapidly
index texts containing any subject matter. NLP does not need to use a dictionary or ontology to identify Concepts.

Once NLP has identified the Concepts and Relations in each sentence in a text, or (more commonly) in many texts, this
information can be used to perform the following types of operations:

• Smart Indexing: provides insight into what’s relevant, what’s related, and what’s representative from a large body of
unstructured text.

• Smart Matching: provides a means to associate entities in the source texts with external items such as lists or dictionaries.
These lists can contain words, phrases, or sentences for full (identical) matching and partial matching, and can contain
templates for matching by format.

4 Using InterSystems Natural Language Processing (NLP)

Conceptual Overview

1.2.1 What NLP Isn’t

NLP is not a search tool. Search tools enable you to locate only those things that you already believe are in the text. Inter-
Systems provides InterSystems SQL Search as a search tool for unstructured text data in SQL tables. SQL Search uses
many of the features of NLP to provide intelligent text search.

NLP is a content analysis tool. NLP enables you to use the entire contents of the text data, including texts whose content
is wholly unknown to you.

NLP is not a dictionary-based content analyzer. Unlike dictionary-based tools, it does not break up sentences into individual
words then attempt to “understand” those words and reconstruct context. NLP simply identifies Entities semantically. It
does not need to look up these Entities in a dictionary or ontology. For this reason its language model is compact, stable,
and general-purpose; you do not have to specify any information about the type of texts being analyzed (medical, legal,
etc.), or provide a separate dictionary of relevant terms. While NLP can be extended by associating a dictionary or ontology
of terms, its essential functions do not require one. Thus it does not require the creation, customizing, or periodic updating
of a dictionary.

NLP supports stemming, but is not by default a stemming tool. By default it does not reduce relations or concepts to stem
forms. Instead, it treats each element as a distinct entity, then identifies its degree of similarity to other elements. NLP
supports stemming as an optional feature; it is recommended primarily for use with Russian and Ukrainian text sources.
InterSystems IRIS also provides a set of classes you can use to perform stemming: the %Text package, as described in the
InterSystems Class Reference. %Text and %iKnow are wholly independent of each other and are used for different purposes.

1.3 Logical Text Units Identified by NLP

1.3.1 Sentences

NLP uses a language model to divide the source text into sentences. In general, NLP defines a sentence as a unit of text
ending with a sentence terminator (usually a punctuation mark) followed by at least one space or line return. The next
sentence begins with the next non-whitespace character. Capitalization is not required to indicate the beginning of a sentence.

Sentence terminators are (for most languages) the period (.), question mark (?), exclamation mark (!), and semi-colon (;).
A sentence can be terminated by more than one terminator, such as ellipsis (...) or emphatic punctuation (??? or !!!). Any
combination of terminators is permitted (...!?). A blank space between sentence terminators indicates a new sentence;
therefore, an ellipsis containing spaces (. . .) is actually three sentences. A sentence terminator must be followed by either
a whitespace character (space, tab, or line return), or by a single quote or double quote character, followed by a whitespace
character. For example, "Why?" he asked. is two sentences, but "Why?", he asked. is a single sentence.

A double line return acts as a sentence terminator with or without a sentence terminator character. Therefore, a title or a
section heading is considered to be a separate sentence, if followed by a blank line. The end of the file is also treated as a
sentence terminator. Therefore, if a source contains any content at all (other than whitespace) it contains at least one sentence,
regardless of the presence of a sentence terminator. Similarly, the last text in a file is treated as a separate sentence,
regardless of the presence of a sentence terminator.

A period followed by a blank space usually indicates a sentence break, though NLP language models recognize exceptions
to this rule. For example, the English language model recognizes common abbreviations, such as “Dr.” and “Mr.” (not
case-sensitive) and removes the period rather than performing a sentence break. The English language model recognizes
“No.” as an abbreviation, but treats lowercase “no.” as a sentence terminator.

You can use the UserDictionary option of your Configuration to cause or avoid sentence endings in specific cases. For
example, the abbreviation “Fr.” (Father or Friar) is not recognized by the English language model. It is treated as a sentence

Using InterSystems Natural Language Processing (NLP) 5

Logical Text Units Identified by NLP

break. You can use a UserDictionary to either remove the period or to specify that this use of a period should not cause a
sentence break. A UserDictionary is applied as a source is loaded; already loaded sources are not affected.

1.3.2 Entities

An entity is a minimal logical unit of text. It is either a word or a group of words that NLP logically groups together into
either a concept or a relation. Other logical units, such as a telephone number or an email address, are also considered
entities (and are treated as concepts).

Note: Japanese text cannot be divided into concepts and relations. Instead NLP analyzes Japanese text as a sequence of
entities with associated particles. The definition of an “entity” for Japanese is roughly equivalent to a Concept in
other NLP languages. For a description of NLP Japanese support (written in Japanese) refer to NLP Japanese.

NLP normalizes entities so that they may be compared and counted. It removes non-relevant words. It translates entities
into lower case letters. It removes most punctuation and some special characters from entities.

By default, NLP restricts its analysis of entities to Concepts. By default, Relations are only analyzed because of their role
in linking Concepts together. This default can be overridden, as described in the “Limiting by Position” section of the NLP
Queries chapter.

1.3.2.1 Path-relevant Words

NLP identifies certain words in each language as being an essential part of its analysis of sentences and paths, but otherwise
not relevant. Outside of the context of a sentence or path, these words have little informational content. The following are
typical path-relevant words:

• Pronouns of all types: definite, indefinite, possessive.

• Indefinite expressions of time, frequency, or place. For example, “then”, “soon”, “later”, “sometimes”, “all”, “here”.

A word is only considered a path-relevant if it is not part of a Concept or a Relation. For example: “He said this was his”
contains path-relevants; “His teacher said this signature was his name” does not contain path-relevants.

Path-relevant words are not considered Concepts, nor are they counted in frequency or dominance calculations. Path-relevant
words may be negation or time attribute markers. Path-relevant words are not stemmed.

1.3.2.2 Non-relevant Words

NLP identifies certain words in each language as being non-relevant, and excludes these words from NLP indexing. There
are several kinds of non-relevant words:

• Articles (such as “the” and “a”) and other words that the NLP language model identifies as having little or no semantic
importance.

• Prefatory words or phrases at the beginning of a sentence, such as “And”, “Nevertheless”, “However”, “On the other
hand”.

• Character strings over 150 characters that are unbroken by spaces or sentence punctuation. A “word” of this length is
highly likely to be a non-text entity, and is thus excluded from NLP indexing. Because in rare cases (such as chemical
nomenclature or URL strings) these 150+ character words are semantically relevant, NLP flags them with the attribute
“nonsemantic”.

Non-relevant words are excluded from NLP indexing, but are preserved when sentences are displayed.

6 Using InterSystems Natural Language Processing (NLP)

Conceptual Overview

https://www.intersystems.com/assets/sites/6/iKnow_Japanese_Summary_ver1_6P.pdf

1.3.3 CRCs and CCs

Once NLP divides a sentence into Concepts (C) and Relations (R), it can determine several types of connections between
these fundamental entities.

• CRC is a Concept-Relation-Concept sequence. A CRC is handled as a Master Concept - Relation - Slave Concept
sequence. Whether an entity is a Master, Relation, or Slave is known as its position. In some cases, a CRC may have
an empty string value for one of the sequence members (CR or RC); this can occur, for example, when the Relation
of the CRC is an intransitive verb: “Robert slept.”

• CC is a Concept + Concept pair. NLP retains the position of each Concept, but ignores the Relation between the two
Concepts. A CC can either be handled as two associated Concepts, or as a Master Concept/Slave Concept sequence.
You can use CC pairs to identify associated Concepts without regard to their master/slave positions or the linking
Relation. This is especially useful when determining a network of Concepts — what Concepts have a connection to
what other Concepts. You can also use CC pairs as a master/slave sequence.

Note: Japanese cannot be analyzed semantically in terms of CRCs or CCs because NLP does not divide Japanese entities
into concepts and relations.

1.3.4 Paths

A Path is a meaningful sequence of Entities through a sentence. In Western languages, Paths are commonly based on
sequential CRCs, thus resulting Paths have the entities (Concepts & Relations) in their original sentence order. Commonly,
though not exclusively, this takes the form of a continuous sequence of CRCs. For example, in a common path sequence
the Slave Concept of one CRC becomes the Master Concept of the next CRC. This results in a path consisting of five
entities: C-R-C-R-C. Other meaningful sequences of Concepts and Relations are also treated as paths, such as a sequence
that contains a path-relevant pronoun as a stand-in for a Concept.

In Japanese, Paths cannot be based on the sequence of Entities in the original sentence. NLP nevertheless does identify
Paths as meaningful sequences of Entities within Japanese text. NLP semantic analysis of Japanese uses an entity vector
algorithm to create Entity Vectors. When NLP converts a Japanese sentence into an Entity Vector it commonly lists the
Entities in a different order than the original sentence to indicate which Entities are linked to each other and how strong
the link between them is. The resulting Entity Vector is used for Path analysis.

A Path must contain at least two Entities. Not all sentences are paths; some very short sentences may not contain the minimum
number of Entities to qualify as a path.

A path is always contained within a single sentence. However, a sentence may contain more than one path. This can occur
when NLP identifies a non-continuous sequence within the sentence. Once identified, the entities that comprise a path
sequence are demarcated and normalized, and the path is assigned a unique Id. Paths are useful when an analysis of just
CRCs is not large enough to identify some meaningfully associated entities. Paths are especially useful when returning
some smaller linguistic unit in a wider context.

1.4 Smart Indexing
Smart indexing is the process of translating unstructured text into a relational network of Concepts and Relations. You can
index the contents of multiple unstructured texts, then analyze the resulting indexed entities according to user-defined query
criteria, such as listing concepts in order of frequency. Each indexed entity can reference its source text, source sentence,
and relational entities, such as its position in a CRC sequence. As part of smart indexing, NLP assigns two values to each
indexed concept, specifying the total number of appearances of the concept in the texts (its frequency), and the number of
different texts in which the concept appears (its spread).

Using InterSystems Natural Language Processing (NLP) 7

Smart Indexing

Once you have performed smart indexing on multiple texts, NLP can use this information to analyze the source texts. For
example, NLP can perform intelligent content browsing. From any selected NLP indexed item, you can browse to other
items based on the degree of similarity between these items. Intelligent browsing can be performed within a source text or
across all indexed source texts.

Once texts are indexed, NLP can generate summaries of individual texts. The user specifies the length of the summary as
a percentage of the original text. NLP returns a summary text consisting of those sentences of the original text that are most
relevant to the whole, based on index statistics. For example, if a text consists of 100 sentences, and the user specifies a
50% summary, NLP generates a summary text consisting of the 50 most relevant sentences from the original.

1.5 Smart Matching
Once NLP has indexed a collection of texts, it is possible to match items found in the texts with one or more user-defined
match lists and to tag these matches. Smart matching performs high-precision tagging of concepts and phrases based on a
semantic understanding of the complete context. Thus matches can occur between similar concepts or phrases, as well as
full (identical) matches. Because this tagging is based on finding semantic matches, smart matching does not require any
understanding of the text contents.

Once tagged, each appearance of a matched phrase in the texts remains associated with the tag text. These phrases can be
matched as a single entity, a CRC, or a path. For example, the user could supply a list of the names of countries, so that
each appearance of a country name in the texts is tagged for rapid access. You can build a dictionary of company names
that you can match against analyst reports, allowing you to quickly find the latest news about the companies you're interested
in. You can create a dictionary in which each appearance of specified medical procedure (phrased in various ways) is
matched to a medical diagnostic code.

This dictionary matching is not limited to simple entities, but extends to CRCs and/or paths if the terms in the dictionary
span more than one entity themselves. Because NLP indexes dictionary terms in the same way that it indexes source texts,
a dictionary entry may be as long as a sentence. It may be useful to match a dictionary entry sentence against sources to
locate similar information.

8 Using InterSystems Natural Language Processing (NLP)

Conceptual Overview

2
NLP Implementation

The NLP semantic analysis engine is a fully-integrated component of InterSystems IRIS Data Platform™. No separate
installation is required. No configuration changes are needed.

Your ability to use NLP is governed by the InterSystems IRIS license. Most standard InterSystems IRIS licenses provide
access to NLP. All InterSystems IRIS licenses that support NLP provide full and unlimited use of all components of NLP.

NLP is provided as a collection of APIs containing class object methods and properties which may be invoked from
ObjectScript programs. APIs are provided to invoke NLP operations from InterSystems IRIS (API classes). Equivalent
APIs are provided to invoke NLP operations from SQL (QAPI classes) and SOAP web services (WSAPI classes). These
APIs are described in the %iKnow package in the InterSystems Class Reference. NLP is a core InterSystems IRIS technology
and therefore does not have application-like interfaces. However, NLP does provide a few generic, sample output interfaces
in the %iKnow.UI package.

To use NLP you must define an NLP domain within an InterSystems IRIS namespace. You can create multiple NLP
domains; an InterSystems IRIS namespace can contain multiple NLP domains. All NLP processing occurs within a specified
domain. A set of NLP indexed text sources is created within a domain. All NLP queries and other text processing must
specify the domain in which to access this data.

2.1 A Note on Program Examples
Many examples in this documentation use data from the Aviation.Event SQL table. If you wish to use this sample data, it
is available at https://github.com/intersystems/Samples-Aviation. (You do not need to know anything about GitHub or have
a GitHub account.) Locate the contents of the README.md file, which appears below the filenames and directories included
in the GitHub repository. Scroll to the “Setup instructions” section at the bottom of the README.md file and complete the
steps.

Many of the program examples in this manual begin by deleting a domain (or its data) and then loading all data from the
original text files into an empty domain. For the purpose of these examples, this guarantees that the NLP indexed source
data is an exact match with the contents of the file(s) or SQL table(s) from which it was loaded.

This delete/reload methodology is not recommended for real-world applications processing large numbers of text sources.
Instead, you should perform the time-consuming load of all sources for a domain once. You can then add or delete individual
sources to keep the indexed source data current with the contents of the original text files or SQL tables.

Using InterSystems Natural Language Processing (NLP) 9

https://github.com/intersystems/Samples-Aviation

2.2 A Note on %Persistent Object Methods
NLP support standard %Persistent object methods for creating and deleting object instances such as domains, configurations,
and so forth. These %Persistent method names begin with a % character, such as %New(). Use of %Persistent object
methods is preferable to using older non-persistent methods, such as Create(). Users are encouraged to use the %Persistent
object methods for new code. Program examples throughout this documentation have been revised to use these preferred
%Persistent methods.

Note that the %New() persistent method requires a %Save() method. The older Create() method does not require a separate
save operation.

2.3 A Note on %iKnow and %SYSTEM.iKnow
Throughout this documentation, all NLP classes referred to are located in the %iKnow package. However, the %SYSTEM.iKnow

class also contains a number of NLP utilities that can be used to simplify coding of common NLP operations. These utilities
are provided as shortcuts; all of the operations performed by %SYSTEM.iKnow class methods can also be performed by
%iKnow package APIs.

You can display information about %SYSTEM.iKnow class methods by using the Help() method. To display information
about all %SYSTEM.iKnow methods, invoke %SYSTEM.iKnow.Help(""); to display information about a specific
%SYSTEM.iKnow method, supply the method name to the Help() method, as shown in the following example:

 DO ##class(%SYSTEM.iKnow).Help("IndexDirectory")

For further details refer to the InterSystems Class Reference.

2.4 Space Requirements and NLP Globals
NLP globals in a namespace have the following prefix: ^IRIS.IK:

• ^IRIS.IK.* are the final globals, permanent globals that contain NLP data. This NLP data is roughly 20 times the size
of the original source texts.

• ^IRIS.IKS.* are the staging globals. During data loading these can grow to 16 times the size of the original source
texts. Staging globals should be mapped to a non-journaled database. NLP automatically deletes these staging globals
once source loading and processing is completed.

• ^IRIS.IKT.* are the temp globals. During data loading these can grow to 4 times the size of the original source texts.
Temp globals should be mapped to a non-journaled database. NLP automatically deletes these temp globals once source
loading and processing is completed.

• ^IRIS.IKL.* are logging globals. These are optional and their size is negligible.

CAUTION: These globals are for internal use only. Under no circumstances should NLP users attempt to directly
interact with NLP globals.

For example, if you are loading 30Gb of source documents, you will need 600Gb of permanent NLP data storage. During
data loading you will need 1.17Tb of available space, 600Gb of which will be automatically released once NLP indexing
completes.

10 Using InterSystems Natural Language Processing (NLP)

NLP Implementation

In addition, the iristemp subdirectory in the Mgr directory may grow to 4 times the size of the original source texts for the
duration of file loading and indexing.

You should increase the size of the InterSystems IRIS global buffer, based on the size of the original source texts. Refer
to the “Performance Considerations when Loading Texts” chapter in this manual.

2.4.1 Batch Load Space Allocation

InterSystems IRIS allocates 256MB of additional memory for each NLP job to handle batch loading of source texts. By
default, NLP allocates one job for each processor core on your system. The $$$IKPJOBS domain parameter establishes
the number of NLP jobs; generally the default setting gives optimal results. However, it is recommended that the maximum
number of NLP jobs should be either 16 or the number of processor cores, whichever is smaller.

2.5 Input Data
NLP is used to analyze unstructured data. Commonly, this data consists of multiple text sources, often a large number of
texts. A text source can be of any type, including the following:

• A file on disk that contain unstructured text data. For example, a txt file.

• A record in an SQL result set with one or more fields that contain unstructured text data.

• An RSS web feed containing unstructured text data.

• An InterSystems IRIS global containing unstructured text data.

NLP does not modify the original text sources, nor does it create a copy of these text sources. Instead, NLP stores its anal-
ysis of the original text source as normalized and indexed items, assigning an Id to each item that permits NLP to reference
its source. Separate Ids are assigned to items at each level: source, sentence, path, CRC, and entity.

NLP supports texts in the following languages: Dutch (nl), English (en), French (fr), German (de), Japanese (ja), Portuguese
(pt), Russian (ru), Spanish (es), Swedish (sv), and Ukrainian (uk). You do not have to specify what language your texts
contain, nor must all of your texts or all of the sentences in an individual text be in the same language. NLP can automatically
identify the language of each sentence of each text and applies the appropriate language model to that sentence. You can
define an NLP configuration that specifies the language(s) that your texts contain, and whether or not to perform automatic
language identification. Use of an NLP configuration can significantly improve NLP performance.

You do not have to specify a genera for text content (such as medical notes or newspaper articles); NLP automatically
handles texts of any content type.

2.5.1 File Formats

NLP accepts source files of any format and with any extension (suffix). By default, NLP assumes that a source text file
consists of unformatted text (for example, a .txt file). It will process source files with other formatting (for example, .rtf,
.doc) but may treat some formatting elements as text. To avoid this, you can either convert your source files to .txt files
and load these .txt files, or you can create an NLP converter to remove formatting from source text during NLP loading.

You specify the list of file extensions as a Lister parameter. Only files with these extensions will be loaded. For example,
this list of file extensions can be specified as an AddListToBatch() method parameter.

Using InterSystems Natural Language Processing (NLP) 11

Input Data

2.5.2 SQL Record Format

NLP accepts records from an SQL result set as sources. NLP generates a unique integer value for each record as the NLP
source Id. NLP allows you to specify an SQL field containing unique values which NLP uses to construct the external Id
for the source records. Note that the NLP source Id is assigned by NLP, it is not the external Id, though frequently both are
unique integers. Commonly, the NLP source text is taken from only some of the fields of the result set record, often from
a single field containing unstructured text data. It can ignore the other fields in the record, or use their values as metadata
to filter (include or exclude) or to annotate the source.

2.5.3 Text Normalization

NLP maintains links to the original source text. This enables it to return a sentence with its original capitalization, punctu-
ation, and so forth. Within NLP, normalization operations are performed on entities to facilitate matching:

• Capitalization is ignored. NLP matching is not case-sensitive. Entity values are returned in all lowercase letters.

• Extra spaces are ignored. NLP treats all words as being separated by a single space.

• Multiple periods (...) are reduced to a single period, which NLP treats as a sentence termination character.

• Most punctuation is used by the language model to identify sentences, concepts and relations, then discarded from
further analysis. Punctuation is generally not preserved within entities. Most punctuation is only preserved in an entity
when there are no spaces before or after the punctuation mark. However, the slash (/), and at sign (@) are preserved
in an entity with or without surrounding spaces.

• Certain language-specific letter characters are normalized. For example, the German eszett (“ß”) character is normalized
as “ss”.

The NLP engine automatically performs text normalization when a source text is indexed. NLP also automatically performs
text normalization of dictionary terms and items.

You can also perform NLP text normalization on a string, independent of any NLP data loading, by using the Normalize()
or NormalizeWithParams() methods. This is shown in the following example:

 SET mystring="Stately plump Buck Mulligan ascended the StairHead, bearing a shaving bowl"
 SET normstring=##class(%iKnow.Configuration).NormalizeWithParams(mystring)
 WRITE normstring

2.5.4 User-defined Source Normalization

The user can define several types of tools for source normalization:

• Converters process source text to remove formatting tags and other non-text content during loading.

• UserDictionary enables the user to specify how to rewrite or use specific input text content elements during loading.
For example, UserDictionary can specify substitutions for known abbreviations and acronyms. It is commonly used
to standardize text by eliminating variants and synonyms. It can also be used to specify text-specific exceptions to
standard NLP processing of punctuation.

2.6 Output Structures
NLP creates global structures to store the results of its operations. These global structures are intended for use by NLP
class APIs only. They are not user-visible and should not be modified by the user.

12 Using InterSystems Natural Language Processing (NLP)

NLP Implementation

NLP indexed data is stored as InterSystems IRIS list structures. Each NLP list structure contains a generated ID for that
item, a unique integer value. NLP entities can be accessed either by value or by integer ID.

NLP preserves the relationships amongst indexed entities, so that each entity can reference the entities related to it, the path
of that sequence of entities, the original sentence that contains that path, and the location of that sentence within its source
text. The original source text is always available for access from NLP. NLP operations do not ever change the original
source text.

2.7 Constants
NLP defines constant values in the %IKPublic.inc file. After specifying this include file, you can invoke these constants
using the $$$ macro invocation, as shown in the following example:

#Include %IKPublic
 WRITE "The $$$FILTERONLY constant=",$$$FILTERONLY

These constants include domain parameter names, query parameter values, and other constants.

2.8 Error Codes
The General Error Codes 8000-8099 are reserved for use by NLP. For further details, refer to General Error Messages in
the InterSystems IRIS Error Reference.

Using InterSystems Natural Language Processing (NLP) 13

Constants

3
Domain Architect

InterSystems IRIS Data Platform™ provides the Domain Architect as an interactive interface for creating and populating
NLP domains and performing analysis on the indexed data. Domain Architect is accessed using the InterSystems IRIS
Management Portal.

It consists of three tools:

• Domain Architect: for creating an NLP domain and populating it with source text data.

• Domain Explorer: for analyzing the data in an NLP domain by looking at specific entities.

• Indexing Results: for displaying how NLP analyzed the text data in a source, using highlighting to show different types
of entities.

All functionality provided through the Domain Architect is also available by using ObjectScript to invoke NLP class
methods and properties.

3.1 Accessing Architect
The starting point for accessing the Domain Architect is the Management Portal Analytics option. From there you select
the Text Analytics option. This displays the Domain Architect option.

All NLP domains exist within a specific namespace. Therefore, you must specify which namespace you wish to use by
selecting the Switch option at the top of any Management Portal interface page. This displays the list of available namespaces,
from which you can make your selection.

A namespace must be enabled for NLP before it can be used. Selecting an enabled namespace displays the NLP Domain

Architect option.

Note: If selecting an enabled namespace does not display the Domain Architect option, you do not have a valid license
for NLP. Look at Licensed to in the Management Portal header. Review or activate your license key.

3.1.1 Enabling a Namespace

A namespace must be enabled for NLP before it can be used with Domain Architect.

• If no namespaces are enabled, the Text Analytics option does not display any options.

• If the current namespace is not enabled, the Analytics option displays a list of analytics-enabled namespaces. Select
one of these displayed namespaces.

Using InterSystems Natural Language Processing (NLP) 15

To enable a namespace for NLP from the Management Portal, select System Administration, Security, Applications, Web

Applications. This displays a list of web applications; the third column indicates if a listed item is a namespace (“Yes”) or
not. Select the desired namespace name from the list. This display the Edit Web Application page. In the Enable section of
the page select the Analytics check box. Click the Save button.

You cannot enable the %SYS namespace. This is because you cannot create NLP domains in the %SYS namespace.

You can set your Management Portal default namespace. From the Management Portal select System Administration,
Security, Users. Select the name of the desired user. This allows you to edit the user definition. From the General tab, select
a Startup Namespace from the drop-down list. Click Save.

3.2 Creating a Domain
From the Domain Architect press the New button to define a domain. You specify the following domain values (in the
specified order):

• Domain name: The name you assign to a domain must be unique for the current namespace (not just unique within its
package class). A domain name may be of any length and contain any typeable characters, including spaces (the %
character is valid, but should be avoided). Domain names are not case-sensitive. However, because Domain Architect
uses the domain name to generate a default domain definition class name, it is recommended that you follow class
naming conventions when naming a domain, unless there are compelling reasons to do otherwise.

• Definition class name: the domain definition package name and class name, separated by a period. If you first specified
the domain name, clicking on the Definition class name generates default names for the domain definition package and
class. The package name defaults to User. The class name defaults to the domain name, stripped of non-alphanumeric
characters. You can accept or modify this default.

The package name and the class name can contain only alphanumeric characters, and are case-sensitive. Specifying a
package name that differs from an existing package name only in lettercase results in an error. Within a package,
specifying a class name that differs from an existing class name only in lettercase results in an error.

• Allow Custom Updates: optionally select this box if you wish to enable adding data or dictionaries to this domain
manually; the default is to not allow custom updates.

Click the Finish button to create the domain. This displays the Model Elements selection screen.

You must Save and Compile a newly created domain before exiting that domain.

If you attempt to create a duplicate domain name, the Domain Architect issues a “Domain name already in use” error.

For other ways to create a domain, refer to NLP Domains. Note that Domain Architect is the only domain creation interface
that allows you to define a domain definition package name and class name.

3.2.1 Opening a Domain

Creating a domain using the Management Portal interface immediately opens the domain, allowing you to begin immediately
to manage this new domain.

To manage an existing domain, click the Open button to list all existing domains in the namespace. This display lists the
packages that contain domains. Select a package to display its domains. Select an existing domain. This displays the Model
Elements selection screen.

16 Using InterSystems Natural Language Processing (NLP)

Domain Architect

3.2.2 Changing the Domain Name and Check Boxes

Creating or opening a domain displays the Model Elements window. If you click on the domain name in this window, the
Details tab displays the Domain Name field, the Domain Tables Package field, and the Allow Custom Updates and Disabled

check boxes. You can modify these characteristics of the domain. Changing the Domain Name does not change the Definition

class name.

Checking the Allow Custom Updates check box allows the manual loading of data sources and dictionaries into this domain
using interfaces other than Domain Architect.

Checking the Disabled check box prevents the loading of all data (source data, metadata, dictionary matching data) during
the Build operation. Each of these types of data also has its own Disabled check box that allows you to disable loading of
each types of data separately.

You must Save and Compile a renamed domain before exiting that domain.

3.2.3 Deleting a Domain

To delete the current domain, click the Delete button. This displays the Drop domain data window. you can either delete
just the domain contents or delete the domain definition. Click Drop domain & definition class to delete the domain and its
associated class definition, including the specifications of data sources, blacklists, and other model elements.

3.3 Model Elements
After creating a domain, or opening an existing domain, you can define model elements for the domain. To add or modify
model elements, click on the expansion triangle next to one of the headings. Initially, no expansion occurs. Once you have
defined some model elements, clicking the expansion triangle shows the model elements you have defined.

To add a model element, click the heading. Then click the Add button shown in the Details tab on the right side. Specify
the name and values. The model element is automatically generated when you leave the Details area. Model elements are
listed in the order of their creation, with the most-recently-created element at the top of the list; modifying a model element
does not change its position in the list.

To modify a model element, expand the heading, then click a defined model element. The current values are shown in the
Details tab on the right side. Modify the name and/or values as desired. The model element is automatically re-generated
when you leave the Details area.

Once you have created model elements, clicking on the Expand All button (or one of the expansion triangles) displays these
defined values. The Element Type column shows the type of each model element. Clicking on the red “X” deletes that
model element.

The Save button saves all changes. The Domain Architect page heading is followed by an asterisk (*) if there are unsaved
changes. Click Save to save your changes.

The Undo button reverses the most recent unsaved change. You can click Undo repeatedly to reverse unsaved changes in
the reverse order that they were made. Once changes are saved, this button disappears.

The following Model Elements are provided:

• Domain Settings

• Metadata Fields

• Data Locations

• Blacklists

Using InterSystems Natural Language Processing (NLP) 17

Model Elements

• Matching

3.3.1 Domain Settings

This model element allows you to modify the characteristics of the domain. All Domain Settings are optional and take
default values. Domain Settings provides the following options:

• Languages: select one or more languages that you wish NLP to identify in the text data. If you check more than one
language, automatic language identification is activated. This increases the processing required for texts. Therefore,
you should not select multiple languages unless there is a real likelihood that texts in the selected language will be part
of the data set. The default language is English.

• Add Parameter: this button allows you to specify a domain parameter value. You can only add a domain parameter to
an empty domain; this means that you must add all desired domain parameters before you Build the domain with Data

Locations specified. Otherwise, the Compile to add, modify, or delete domain parameters fails with an error message;
you can use the Delete button to drop domain contents to allow you to add, modify, or delete domain parameters.

To add a parameter, specify the domain parameter name and the new value. Domain parameter names are case-sensitive.
You can use either name form. For example, Name=SortField, Value=1 or Name=$$$IKPSORTFIELD, Value=1. No
validation is performed. All unspecified domain parameters take their default values. To view the parameters that you
have added, expand the Domain Settings heading.

• Maximum Concept Length: the largest number of words that should be indexed as a concept. This option is provided
to prevent a long sequence of words from being indexed as a concept. The default (0) uses the language-specific default
for the maximum number of words. This default should be used unless there are compelling reasons to modify it.

• Manage User Dictionary: this button displays a “Manage User Dictionary” box that allows you to specify one or more
strings to the user dictionary. Each specified string either specifies a string that will rewrite to a new string, or specifies
a string to which you assign an attribute label from a drop-down list.

3.3.2 Metadata Fields

Add Metadata: this button allows you to specify a source metadata field. For each metadata field you specify the field name,
the data type (String, Number, or Date), the supported operators, and the storage type. After creating a domain, you can
optionally specify one or more metadata fields that you can use as criteria for filtering sources. A metadata field is data
associated with an NLP data source that is not itself NLP indexed data. For example, the date and time that a text source
was loaded is a metadata field for that source. Metadata fields must be defined before loading text data sources into a
domain.

Case Sensitive check box: By default, a metadata field is not case-sensitive; you can select this check box to make it case-
sensitive.

Disabled check box: You can select the Disabled check box to disable all metadata fields, or you can select the Disabled
check box displayed with an individual metadata field to disable just that metadata field. A disabled field is not loaded
during the Build operation.

The metadata fields that you specify here appear in the Data Locations Add data from table and Add data from query details
under the title “Metadata mappings”.

3.3.3 Data Locations

Specifies the source for adding data. Option are Add data from table, Add data from query, Add data from files, Add RSS

data, and Add data from global.

18 Using InterSystems Natural Language Processing (NLP)

Domain Architect

• The Drop existing data before build check box allows you to specify whether source text data already indexed in this
NLP domain should be deleted before adding the source text data specified here. To use this check box to drop data,
data loading must not be disabled. To drop existing data without loading new data, use the Delete button Drop domain

contents only option.

• The Disabled check box allows you to disable source indexing; disabled source data is not loaded during the Build
operation. If data loading is disabled, the Drop existing data before build check box is ignored.

A Build operation for a large number of texts may take some time. If you have already loaded the data locations and
wish to add or modify metadata or a matching dictionary you can click the Data Locations Disabled check box to index
these model elements without reloading the data locations.

After specifying data locations, you must Save and Compile the domain, then select the Build button to build the data indices.

3.3.3.1 Add Data from Table

This option allows you to specify data stored in an existing SQL table in the current namespace. It provides the following
fields:

• Name: you can either specify a name or take the default name for the extracted result set table. Follows SQL table
naming conventions. The default name is Table_1 (with the integer incrementing for each additional extracted result
set table you define).

• Batch Mode: a check box indicating whether or not to load source text data in batch mode.

• Schema: from this drop-down list select an existing schema in the current namespace.

• Table Name: from this drop-down list select an existing table in the selected schema.

• ID Field: from this drop-down list select a field from the selected table to serve as the ID field (primary record identifier).
An ID field must contain unique, non-null values.

Selecting –custom– from the drop-down list allows you to input a field name; for example, a hidden RowId field or
a field that does not (yet) exist. Field names are not case-sensitive. Selecting –custom– also displays the Show Default

Options button. This button selects the first non-hidden field in the table from the drop-down list and also allows you
to return to the drop-down list of fields.

• Group Field: an SQL select-item expression that retrieves a secondary record identifier from the selected table. This
field defaults to the initial ID Field selection.

Selecting –custom– from the drop-down list allows you to input a field name; for example, a hidden RowId field or
a field that does not (yet) exist. Field names are not case-sensitive. Selecting –custom– also displays the Show Default

Options button. This button selects the first non-hidden field in the table from the drop-down list and also allows you
to return to the drop-down list of fields.

• Data Field: from this drop-down list select a field from the selected table to serve as the data field. The data field contains
the text data loaded for NLP indexing. You can specify a field of data type %String or %Stream.GlobalCharacter
(character stream data).

Selecting –custom– from the drop-down list allows you to input a field name; for example, a hidden RowId field or
a field that does not (yet) exist. Field names are not case-sensitive. Selecting –custom– also displays the Show Default

Options button. This button selects the first non-hidden field in the table from the drop-down list and also allows you
to return to the drop-down list of fields.

• Where Clause: you can optionally specify an SQL WHERE clause to limit which records are included in the result set
table. Do not include the WHERE keyword.

If you have defined one or more Metadata Fields for this domain, the Metadata mapping option allows you to specify a
metadata field for this table. From the drop-down list you can select a field from the selected table, select – not mapped –,

Using InterSystems Natural Language Processing (NLP) 19

Model Elements

or select – custom –. If you select – custom – the Architect displays an empty field in which you can specify the custom
mapping.

If you have not defined any Metadata Fields for this domain, the Metadata mapping option provides a Declare Metadata

button that directs you to the Add Metadata domain option.

3.3.3.2 Add Data from Query

Add data from query is similar to Add data from table, but allows you to specify a fully-formed SQL query for an existing
table (or tables), from which you provides the following fields:

• Name: you can either specify a name or take the default name for the extracted result set table. Follows SQL table
naming conventions. The default name is Query_1 (with the integer incrementing for each additional extracted result
set table you define).

• Batch Mode: a check box indicating whether or not to load source text data in batch mode.

• SQL: the query text, an InterSystems SQL SELECT statement. Defining a query allows you to select fields from more
than one table by using JOIN syntax. When specifying more than one table, assign column aliases to selected fields.
Defining a query also allows you to specify an expression field that you can use as the Group field.

The following field selection drop-down lists display the selected fields. They do not display table alias prefixes. If
the field has a column alias, this alias is listed rather than the field name.

• ID Field: from this drop-down list select a field from the selected table to serve as the ID field. An ID field must contain
unique, non-null values.

• Group Field: from this drop-down list select a select-item expression (such as an SQL function expression) from the
query to serve as a secondary record identifier (group field). For example, YEAR(EventDate).

• Data Field: from this drop-down list select a field from the selected table to serve as the data field. The data field contains
the text data loaded for NLP indexing.

If you have defined one or more Metadata Fields for this domain, the Metadata mapping option allows you to select either
– not mapped – or – custom – for each defined metadata field. The default is – not mapped –. If you select – custom – the
Architect displays an empty field in which you can specify the custom mapping.

If you have not defined any Metadata Fields for this domain, the Metadata mapping option provides a Declare Metadata

button that directs you to the Add Metadata domain option.

The Model Elements window Element Type column displays a truncated form of the query you defined; the query is truncated
after the first table name in the FROM clause. The full query is shown in the Details window.

3.3.3.3 Add Data from File

This option allows you to specify data stored in files. It provides the following fields:

• Name: you can either specify a name or take the default name for the extracted data file. The default name is File_1
(with the integer incrementing for each additional extracted data files you define).

• Path: the complete directory path to the directory containing the desired files. The Path syntax is filesystem dependent;
on a Windows system it might look like the following: C:\\temp\NLPSources\

• Extensions: the file extension, such as txt or xml. Do not include the dot prefix when specifying the file extension.
Specify multiple extensions as a comma-separated list with no dots and no spaces; for example, txt,xml. If specified,
only files with the specified extensions are included in the resulting extracted data. If the Extensions field is left blank
(the default) all files are included, regardless of their extensions.

• Filter Condition: a condition used to restrict which files are to included in the resulting extracted data.

20 Using InterSystems Natural Language Processing (NLP)

Domain Architect

• Recursive: a check box indicating whether to select files recursively. When checked, data can be extracted from the
files in the specified directory and files in all of its subdirectories, and their sub-subdirectories, etc. When not checked,
data can be extracted only from files in the specified directory. The default is non-recursive (check box not checked).

• Batch Mode: a check box indicating whether or not to load source text data in batch mode.

• Encoding: a drop-down list of the types of character set encoding to use to process the files.

3.3.3.4 Add RSS Data

This option allows you to specify data from an RSS stream feed. It provides the following fields:

• Name: you can either specify a name or take the default name for the extracted data. The default name is RSS_1 (with
the integer incrementing for each additional RSS source you define).

• Batch Mode: a check box indicating whether or not to load source text data in batch mode.

• Server Name: the name of the host server on which the URL is found.

• URL: the navigation path within the server address to the actual RSS feed.

• Text Elements: a comma-separated list of text elements to load from the RSS feed. For example title,description.
Leave blank for defaults.

3.3.3.5 Add Data from Global

This option allows you to specify data from an InterSystems IRIS global. It provides the following fields:

• Name: you can either specify a name or take the default name for the extracted data. The default name is Global_1
(with the integer incrementing for each additional global source you define).

• Batch Mode: a check box indicating whether or not to load source text data in batch mode.

• Global Reference: The global from which you wish to extract the source data.

• Begin Subscript: the first global subscript in a range of subscripts to include.

• End Subscript: the last global subscript in a range of subscripts to include.

• Filter Condition: a condition used to restrict which files are to included in the resulting extracted data.

3.3.4 Blacklists

Define blacklists: After creating a domain, you can optionally create one or more blacklists for that domain. A blacklist is
a list of terms (words or phrases) that you do not want a query to return. Thus a blacklist allows you to perform NLP
operations that ignore specific terms in data sources loaded in the domain.

• Name: specify the name of a new blacklist, or take the default name. Blacklist names are not case-sensitive. Specifying
a duplicate blacklist name results in a compile error. The default name is Blacklist_1 (with the integer incrementing
for each additional blacklist you define).

• Entries: specify terms to include in the blacklist, one term per line. Terms should be in lower case. Duplicate terms are
permitted. You can copy/paste terms from one blacklist to another. You can include blank lines to separate groups of
terms. A line return at the end of your list of terms is optional; blank lines are not counted as entries.

If you add, modify, or delete a blacklist, you must Save and Compile the domain for this change to take effect.

Because defining blacklists has no effect on how data is loaded into a domain, changes to blacklists do not require re-
building the domain.

Using InterSystems Natural Language Processing (NLP) 21

Model Elements

Blacklists are compiled, then supplied to the Domain Explorer, which allows you to specify none, one, or multiple blacklists
when performing analysis of source text data loaded into the domain. A blacklist is applied to some (but not all) Domain
Explorer analytics.

3.3.5 Matching

The Matching option provides the Add Dictionary option to define a dictionary and specify its items and terms.

The Matching option provides four check box options, as follows:

• Disabled: You can select the Disabled check box to disable building of all dictionaries, or you can select the Disabled
check box displayed with an individual dictionary to disable the building of that dictionary. Selecting Disabled check
boxes allows you to build only those dictionaries that you have changed. The default is off.

• DropBeforeBuild: default on

• AutoExecute: default on

• IgnoreDictionaryErrors: default on

3.3.5.1 Add Dictionary

The Add Dictionary button displays the dictionary definition options: dictionary name (with a supplied default), an optional
description, the dictionary language selected from a drop-down list of NLP supported languages, and the disabled check
box. The default name is Dictionary_1 (with the integer incrementing for each additional dictionary you define).

The Add Item button displays the item definition options: item name (with a supplied default), a uri name (with a supplied
default), the item language selected from a drop-down list of NLP supported languages, and the disabled check box. To
define more items, select the dictionary name. Items are listed in order of creation, with the most recent at the top of the
list. Within each item you can define one or more terms. The default name is Item_1, the default uri name is uri:1 (with
the integer incrementing for each additional item you define for this dictionary).

The Add Term button displays the term definition options: a string specifying the term, the term language selected from a
drop-down list of NLP supported languages, and the disabled check box. To define more terms, select the item name. Terms
are listed in order of creation, with the most recent at the top of the list.

3.4 Save, Compile, and Build
You must save, compile, and build a domain (in that order) using the buttons provided. You must save and compile a
domain after adding, modifying, or deleting any Model Elements.

The Save button saves the current domain definition. Architect greys out (disables) the Save button if no domain definition
is open. Architect does not issue an error if you save a domain definition without changing it.

The Compile button compiles the current domain definition. It compiles all of the classes and routines that comprise the
domain definition. If you have not saved changes that you made to the domain definition, the compile operation prompts
you to save the domain definition before compiling.

The Build button loads the specified sources into the current domain. If you have made changes to the Data Locations,
Metadata Fields, or Matching dictionaries, you must build the domain. The Build Domain window displays progress messages
such as the following:

22 Using InterSystems Natural Language Processing (NLP)

Domain Architect

13:50:48: Loading data...
13:51:49: Finished loading 3 sources
13:51:49: Creating dictionaries and profiles...
13:51:49: Finished creating 1 dictionaries, 1 items, 3 terms and 0 formats
13:51:49: Matching sources...
13:51:50: Finished matching sources
13:51:50: Successfully built domain 'mydomain'

The build operation can be time-consuming. If a Disabled check box is checked for a model element, the Build operation
does not load the corresponding sources. Selecting Disabled check boxes allows you to build only those model elements
that you have changed.

3.5 Domain Explorer
There are two ways to access the Domain Explorer:

• From the Management Portal Analytics option select the Text Analytics option. This displays the Domain Explorer
option. When you select this option it prompts you to select an existing domain from a drop-down list.

• From the Management Portal Analytics option select the Text Analytics option. Access the Domain Architect and create
or access a domain. Once you have specified Data Locations and populated the domain with this data using the Build

button, you can select Domain Explorer from the Tools tab. This displays the Domain Explorer as a separate browser
tab with the current domain selected.

The Domain Explorer is a display interface with broad application. It shows a wealth of information about the source text
data indexed in a domain. It initially displays a list of either the top (most-frequently-occurring) concepts, or the dominant
(highest dominance) concepts. You can toggle between these two lists.

If you select an entity, the Domain Explorer provides analysis of similar entities and related concepts, and analysis of the
appearance of the specified entity in larger text units (sources, paths, and CRCs). This provides a contextual at-a-glance
view of what's in your data.

The Domain Explorer provides generic filters that support selecting subsets of the sources in a domain based on metadata
criteria. This interface provides a sample of how NLP Smart Indexing can be used to quickly overview and navigate a large
set of documents.

3.5.1 Domain Explorer Settings

By default, the Domain Explorer displays analysis of the domain that was current in Domain Architect or the domain you
selected when you invoked the Domain Explorer.

To select another domain:

1. Select the Gear icon at the upper right of the Domain Explorer. This displays the Settings box.

2. The Settings box contains the Switch domain drop-down list. Select a domain from this list. By default, this list include
the domains defined in the current namespace. If you select the Include other namespaces check box, the drop-down
list includes domains defined in all namespaces.

To apply blacklists:

1. Select the Sunglasses icon at the upper right of the Domain Explorer. If the domain has no defined blacklists, this icon
does not appear.

2. The Blacklists box contains check boxes for each defined blacklist. Select one or more, then click the Apply button.

To use stemming:

Using InterSystems Natural Language Processing (NLP) 23

Domain Explorer

1. Select the Gear icon at the upper right of the Domain Explorer. This displays the Settings box.

2. If the domain is configured for stemming, the Settings box also contains the Use stems instead of entities and Show

representation form for stems check boxes. If Use stems instead of entities is checked, the Domain Explorer performs
stemming analysis and changes the Domain Explorer headings as follows: Top Concepts/Dominant Concepts becomes
Top Stems/Dominant Stems, Similar Entities becomes Similar Stems, Related Concepts disappears, leaving Proximity
Profile, and the CRCs tab disappears. If Show representation form for stems is checked, each stem is displayed as a
representative word; if not checked, the stem itself is displayed. Both boxes are checked by default.

The number at the top right of the Domain Explorer is the number of sources loaded in the selected domain that are available
for data analysis. This number can be limited by applying filters.

3.5.2 Listing All Concepts

The Domain Explorer initially provides concept analysis of the data sources loaded in the domain. There are two ways to
list concepts, by frequency or by dominance. You can toggle between these two by selecting the frequency or dominance

button:

• Top Concepts: selecting the frequency button lists all concepts in the sources in descending order of frequency. If
multiple concepts have the same frequency, the concepts are listed in descending collation order. Each concept is listed
with its frequency (total number of occurrences in all sources) and spread (number of sources containing that concept).
To view frequency counts for a single source, use the Indexing Results tool.

• Dominant Concepts: selecting the dominance button lists all concepts in the sources in descending order of dominance
score. If multiple concepts have the same dominance score, the concepts are listed in descending collation order. The
dominance score is calculated by taking the dominance values for each source and using an averaging algorithm to
determine the dominance of a concept across all loaded sources. Dominance values in a single source are integer values,
with the most dominant concept given a dominance of 1000. To view dominance values for a single source, use the
Indexing Results tool.

3.5.3 Analyzing a Specified Entity

There are two ways to display analysis of a specific entity:

• Select a concept from either the Top Concepts or Dominant Concepts listings.

• In the entry field in the top left corner you can type the first few characters (minimum of 2, not case-sensitive) of a
word found in an entity, and the Domain Explorer displays a drop-down list of all of the existing entities that contain
a word beginning with those characters. Select an entity from this drop-down list, then press the Explore! button. You
can use this option to display Relations or Concepts; both types of Entities are shown in the drop-down list.

Selecting an entity displays two kinds of analysis of that entity: associated entities and specified entity in context.

3.5.3.1 Associated Entities

Selecting an entity displays the following listings:

• Similar Entities: a list of concepts and relations that are similar to the specified entity, with the frequency (total number
of occurrences in all sources) and spread (number of sources containing that concept) of each concept or relation. The
first similar entity listed is always the specified entity itself. For a concept, this first listed entity is the same as the Top

Concepts listing for that concept.

• Related Concepts: selecting the related button displays a list of concepts that are related to the specified concept, with
the frequency (total number of occurrences in all sources) and spread (number of sources containing that concept) each
concept. A related concept is a concept that appears in a CRC with the specified concept.

24 Using InterSystems Natural Language Processing (NLP)

Domain Architect

• Proximity Profile: selecting the proximity button displays the Proximity Profile table. This lists concepts associated by
proximity to the specified concept, with a proximity score for each concept.

Selecting an entity from the Similar Entities, Related Concepts, or Proximity Profile listings changes all listings to analysis
of that entity. It does not change the Top Concepts and Dominant Concepts listings.

3.5.3.2 Entity in Context

Selecting an entity also displays the following listings of that entity in context:

• Sources: a list of source texts containing the specified entity (shown highlighted in green), along with the internal
source ID (an integer) and external source ID. Sources are listed in descending order by internal source ID. The source
text displays all sentences in the source that contain the entity; intervening sentences that do not contain the entity are
not displayed, but are indicated by ellipsis (...); note that leading ellipsis is not shown when the first displayed sentence
is not the first sentence in the source, and trailing ellipsis is always shown after the final sentence, even when the last
displayed sentence is actually the last sentence in the source.

Red text indicates negation, with the entities within the scope of the negation attribute in red letters. Negation scope
is not necessarily the same as the corresponding path, sentence, or CRC.

Selecting the Eye icon or clicking anywhere in the listing for a source displays the full text of the source. Each occurrence
of the specified entity is highlighted and each negation scope text is shown in red letters in the full text. (The % option
must be set to 100% to display all occurrence of the specified entity in this full text box.)

Selecting the Arrow icon displays the Indexing Results tool.

• Paths: a list of paths containing the specified entity. Paths are listed in descending order by ID. Note that because path
IDs are assigned on a per-source basis, the same path text may be listed multiple times with different path IDs.

The entities and attributes of the path are color coded and highlighted as described in the Indexing Results tool
description of Indexed Sentences, with the addition of the Explore! entity appearing in yellow-orange.

Selecting a path element changes all listings to analysis of that entity. It does not change the Top Concepts and Dominant

Concepts listings.

Selecting the Eye icon displays the full text of the source with the specified entity highlighted in green.

Selecting the Arrow icon displays the Indexing Results tool.

• CRCs: a list of Concept-Relation-Concept (CRC) sequences that contain the specified entity, with the frequency (total
number of occurrences of that CRC in all sources) and spread (number of sources containing that CRC). Note that
many CRCs contain only one concept: CR or RC. The entity type highlighting is the same as for Paths, except that
Path-relevant Words are not part of CRCs and are therefore not displayed. Attributes are not highlighted in the CRCs
listing.

Selecting a CRC element changes all listings to analysis of that entity. It does not change the Top Concepts and Dominant

Concepts listings.

Selecting the Eye icon displays the Sources with selected CRCs box, listing each source that contains an instance of
the CRC. The CRC is highlighted in green in the context of its sentence, and flagged with the Source ID of the source.
A source ID listing can contain multiple sentences containing the specified CRC; intervening sentences that do not
contain the CRC are indicated by ellipsis. From the Sources with selected CRCs box you can select the Eye icon for a
source containing the CRC to display the full text of the source with the specified entity (not the CRC) highlighted in
green.

Note: If Japanese is the only language supported for the domain, the Domain Explorer display differs as follows: the
Related Concepts and CRCs listings are not shown. An Entity Vectors listing is substituted for the Paths listing.

Using InterSystems Natural Language Processing (NLP) 25

Domain Explorer

3.5.3.3 Full Text Box

The Eye icon displays the full text of a selected source. This text box is identified by the external ID of the source. For
example, :SQL:1171:1171.

The source text is tagged as follows:

• The specified entity is highlighted in green.

• Red text indicates negation, with the entities within the scope of the negation attribute in red letters.

This full text box provides the following option buttons:

• metadata: displays the metadata for the source. All sources are provided with a DateIndexed metadata field. This date
stamp is represented as a UTC date and time in the Display format for your locale. It is truncated to whole seconds.
To return to the source text, press the metadata button again.

• highlight: performs no action.

• indexing: displays the source text highlighted to indicate the types of entities, as follows:

– Green: the specified entity (either a Concept or a Relation).

– Blue: a Concept.

– White: a Relation.

– Light Blue: a Path-relevant Word.

– Unmarked: a Non-relevant word.

Negation scope text is displayed in red letters.

• dictionaries: performs no action.

• %: summarizes the source text. The default percentage is 100% (full text). Specifying a integer less than 100 and then
pressing the % button summarizes the source text by reducing the text to (roughly) the specified size by eliminating
sentences that are have a low relevancy score, when compared to the other sentences in the source. Summerization
does not necessarily retain sentences that contain the specified entity.

3.5.4 Limiting the Sources to Analyze

You can limit the scope of your data analysis by using filters. A filter includes or excludes data sources that are loaded in
the domain from analysis. By default, the Domain Explorer analyzes all data sources loaded in the domain.

• The Filter icon (funnel) button at the top right of the Domain Explorer applies a filter, which includes or excludes
sources from analysis based on the criteria you specify. You can specify several types of filters, and can apply more
than one filter. Multiple filters can be associated with AND, OR, NOT AND, or NOT OR logic.

To add a filter, select the filter type from the drop-down list, specify the filter criteria, then select the add button, then
the Apply button. When adding multiple filters, you select the AND/OR logic option associating the filters after the
add button and before the Apply button.

When one or more filters are in effect, the Filter icon displays in green.

The number to the left of the Filter icon indicates the number of sources included after applying the filters. If no filters
are applied, this number is the total number of sources in the domain.

• To remove a single filter, select the Filter icon, then select the black X next to the filter description, then select the Apply

button. To remove all filters, select the Filter icon, then the Clear button, then the Apply button.

The following filter types are supported:

26 Using InterSystems Natural Language Processing (NLP)

Domain Architect

– Metadata: used to exclude sources by their metadata values. By default, all sources have DateIndexed metadata.
To apply DateIndexed metadata, select this field, select an operator, and select a date value by clicking on the
calendar icon, then selecting the desired day.

– Source IDs: used to select sources for inclusion by source ID. You can specify a single source ID or a comma-
separated list of source IDs.

– Source ID Range: used to select sources for inclusion by source ID. You can range of source IDs by specifying
the from and to range values. The range is inclusive of these values.

– External IDs: used to select sources for inclusion by their external IDs. For example, :SQL:1171:1171. You can
specify a single ID or a comma-separated list of IDs. External source IDs are listed in the Sources listing.

– SQL: used to select sources for inclusion by specifying an SQL query.

3.6 Indexing Results
The Indexing Results tool enables you to view the NLP indexing of the contents of a individual data source. This displays
three listings: Indexed sentences, Concepts, and CRCs. The Indexed sentences display includes both color-coded text that
shows entity types (Concept, Relations, Non-relevants, Path-relevants) and color-coded highlighting that shows attributes
and their scope.

You can access the Indexing Results tool from the InterSystems IRIS Management Portal by selecting Analytics, then Text

Analytics. The Analytics options are not displayed unless you are in a namespace that has been enabled for Analytics. Select
the desired namespace. This displays the Analytics tools. You can access the Indexing Results tool in either of two ways:

• By selecting the Text Analytics and then the Indexing Results option.

• By selecting the Text Analytics and then the Domain Architect option. In the Domain Architect you open an existing
domain or define a new domain. Once you are in a compiled domain, you can use the Tools tab Indexing Results button
to display how NLP has indexed the data. This displays the Indexing Results tool as a separate browser tab.

The Indexing Results tool enables you to display indexed results of either data in a specified domain or manual input data.

Note: To display Indexing Results options displayed at the top right you may have to scroll horizontally.

3.6.1 Domain Data

At the top right of the Indexing Results window is a drop-down list of defined domains. It defaults to the first defined
domain. Select the desired domain.

Click the wide blank box across the top of the window to display a drop-down single-line listing of the contents of each
indexed data source. Select one of these sources to display the indexing results for that source.

You can use the >> button to collapse (make disappear) the wide single-line source box. This enables you to view the
indexing results without horizontal scrolling. You can use the << button to expand (make reappear) the wide single-line
source box as a blank box that you can click to select another data source.

3.6.2 Manual input Data

At the top right of the Indexing Results window select the manual input button to input text directly for NLP indexing results
analysis. This opens the Real-time input box. Type or paste your input text in the blank box. Use the Configuration drop-

Using InterSystems Natural Language Processing (NLP) 27

Indexing Results

down box to select an existing (or default) configuration, or select language —> and then use the second drop-down list to
select a national language or Auto-detect.

3.6.3 Indexed Sentences

The sentences in the source are listed in order, one sentence per line. Entity types (Concept, Relations, Non-relevants, Path-
relevants) and attributes are indicated by color-coding and highlighting.

At the top right of the Indexing Results window you can select the highlighting type: either light or full: light uses color-
coding and underlining to indicate entity types and attributes; it is intended to be unobtrusive to allow for convenient
reading of sentences; full displays boxes around each entity and uses thick lines for attributes to provide a clearer represen-
tation of the NLP indexed structures. The information content of both type of highlighting is the same. The default is full.

The sentence text is highlighted for entities as follows:

• concept: blue, boxed

• relation: light green, boxed

• non-relevant: grey, not boxed

• path-relevant: black, grey box

The sentence text is highlighted for attributes as follows:

• A Negation attribute phrase has red text (with concepts in bold letters and relations in regular letters); the concepts and
relations are further clarified in full highlighting, where the enclosing boxes are the entity type color: blue for concepts,
light green for relations. The negation keywords are underlined in red; multi-word negation terms (such as “was not”)
are shown with each word underlined in red.

• A Time, Duration, or Frequency attribute phrase is underlined with an orange dotted line. Time attribute keywords are
underlined in orange. Duration attribute keywords are underlined in bright green. Frequency attribute keywords are
underlined in yellow.

• A Measurement attribute is underlined with a magenta dotted line. The measurement keywords are underlined in
magenta.

• A Negative Sentiment attribute is underlined with a purple dotted line. The sentiment keywords are underlined in
purple.

• A Positive Sentiment attribute is underlined with a green dotted line. The sentiment keywords are underlined in green.

These combinations make it possible to highlight combinations of entities and attributes. For example, a Measurement
attribute that is part of a Negation attribute phrase.

3.6.4 Concepts and CRCs

The Indexing Results displays two listings, one of all concepts in the source, one of all of the CRCs in the source

• Concepts in the source in descending order.

• CRCs in the source highlighted (as above) to indicate concepts and relations, in descending order. Note that the CRCs
listings do not include non-relevant or path-relevant words and do not indicate attributes.

At the top right of the Indexing Results window the sort by buttons allow you to toggle the Concepts and CRCs listings to
display either frequency counts or dominance values in descending order.

In the Concepts listing, the most dominant concept(s) are given a dominance of 1000. Less dominant concepts are given
smaller integer values, with larger sources tending to have lower least-dominant values. For example, a source containing

28 Using InterSystems Natural Language Processing (NLP)

Domain Architect

25 concepts might have a dominance range between 1000 and 83; a source containing 300 concepts might have a dominance
range between 1000 and 2.

In the CRCs listing, the dominance score is arrived at my adding the dominance values of the concepts and relations.

Note: If Japanese is the only language supported for the domain, the Indexing Results display substitutes a single Entities

listing for the Concepts and CRCs listings.

Using InterSystems Natural Language Processing (NLP) 29

Indexing Results

4
REST Interface

A REST API interface is provided for common NLP tasks in the %iKnow.REST.v1 class of InterSystems IRIS Data Platform™.
This REST API covers basics (querying domains & configurations), classic queries (including semantics), simple domain
operations (adding/deleting sources, blacklist management) and support for the matching and dictionary APIs.

Here are some of the main characteristics of the API:

• Most API calls have a GET and POST variant. The GET variant takes default values for all non-essential parameters
and should be easiest to invoke. The POST variant gives you access to all relevant arguments through a JSON string
passed as the request object, which will complement what you put in the URL and override it in the event of an overlap.
For example, some entity values that contain a slash cannot be used with a GET request, but can be supplied as a JSON
property submitted in a POST request.

• Available arguments for POST requests are described succinctly in the Class Reference in %iKnow.REST.v1 and some
shared arguments (filters & highlighting) in %iKnow.REST.Base.

• The entire URL is always in lowercase. POST arguments and returned JSON property names are in camelcase, with
the first character in lowercase.

• Returned JSON is typically comprehensive, returning much more information than is supplied by the corresponding
flat (SQL-compatible) query. For example, if you ask for all sources containing an entity, you’ll get the list of sources,
metadata, and optionally highlighted snippets back. You can exclude some of this functionality if desired for performance
reasons, but by default most functionality is included automatically.

4.1 Swagger
The NLP REST API is fully documented using the OpenAPI Specification (also known as Swagger). The description in
YAML is available from the "/swagger" endpoint and can be loaded directly into swagger-ui for convenient GUI capabilities
on top of this API.

To use it, either install swagger-ui or go to http://petstore.swagger.io and point to this endpoint.

• Download swagger-ui

• Unzip the swagger-ui download.

• In the Swagger box specify either:

– for InterSystems IRIS with Minimal security:
http://localhost:57775/api/iknow/v1/samples/swagger (substituting your Webserver port number
for 57775 and the desired namespace for samples).

Using InterSystems Natural Language Processing (NLP) 31

https://github.com/OAI/OpenAPI-Specification
https://www.swagger.io
https://github.com/swagger-api/swagger-ui/blob/master/README.md

– for InterSystems IRIS with Normal security:
http://localhost:57775/api/iknow/v1/samples/swagger?IRISUsername=myname&IRISPassword=mypassword

(substituting your Webserver port number for 57775, the desired namespace for samples, your InterSystems
IRIS user name for myname, and your InterSystems IRIS accounts password for mypassword).

• Select the Explore button.

4.1.1 Returning NLP Data Using Swagger

The Swagger–UI display for each REST statement can be used to invoke the REST API directly, or to provide a Request
URL value that can be used to invoke the REST API in a browser window (for GET requests).

To invoke a REST API directly, specify the required Parameters. Commonly, an NLP REST API requires the domain ID
parameter, specified as an integer number. For example, to GET the domain details of the domain with the ID of 2 generates
the following Request URL:

http://localhost:57775/api/iknow/v1/user/domain/2/details

Note that the Swagger interface infers the namespace to use from the URL you used to access the /swagger endpoint. For
example, to invoke the REST API in namespace SAMPLES, load the swagger endpoint using the URL:

http://localhost:57775/api/iknow/v1/samples/swagger

The NLP data is returned to the browser in JSON format. For example, this Request URL returns the following JSON string
for a domain named “crashes”:

{"id":"2","name":"crashes","parameters":{"DefaultConfig":"crashes.Configuration","DefinitionClass":"User.crashes","ManagedBy":"User.crashes"},"metadata":[{"id":1,"name":"DateIndexed","operators":["=","!=","<","<=",">",">="],"dataType":"date","storage":"normal","caseSensitive":0,"hidden":0}]}

4.2 REST Operations
The NLP REST operations are grouped into the following topics:

• Domain and Configurations information (listed in Swagger under “Miscellaneous”)

• Sources within a specified domain.

• Entities within a specified domain.

• Sentences within a specified domain.

• Paths and CRCs within a specified domain.

• Dictionaries and Matching within a specified domain.

• Blacklists within a specified domain.

• Highlighting (listed in Swagger under “Miscellaneous”)

While the core REST API supports access to any defined domain (by specifying the domain id at the start of almost every
URL), you can also generate a domain-specific REST API, allowing you to expose a single domain through your webapp.
To do this, use the CreateDomainAPI() method found in the %iKnow.REST.Base class, and then create a new web appli-
cation referring to the newly created class as the “Dispatch Class”. This may be useful if you only want to enable access
to a specific domain and have disabled the general /api/iknow/ web application.

For any of these REST operations, if the specified domain does not exist, the operation returns
{"errors":[{"error":"ERROR #8021: Domain with id 7 does not

32 Using InterSystems Natural Language Processing (NLP)

REST Interface

exist","code":8021,"domain":"%ObjectErrors","id":"IKNoDomainWithId","params":["7"]}],"summary":"ERROR

#8021: Domain with id 7 does not exist"}, unless stated otherwise.

4.2.1 Domains and Configurations

The NLP REST operations for Domains and Configurations (categorized as “miscellaneous”) are the following:

• List Domains: GET and POST to retrieve information about all domains in the current namespace. See GetDomains().

If there are no defined domains, returns {"domains":[]}. Otherwise, returns a JSON array of domains in domain name
order. For each domain, it lists the domain id, domain name, NLP version, definitionClass name, and sourceCount.

Listing domains is further described in the “NLP Environment” chapter of this guide.

• List Configurations: GET and POST to retrieve information about all configurations in the current namespace. See
GetConfigurations().

An NLP-enabled namespace is assigned the configuration {"configurations":[{"id":1,"name":"DEFAULT","lan-
guages":["en"]}]}. You can explicitly define additional configurations. When you use the Domain Architect to create
a domain, NLP creates a corresponding configuration.

This option returns a JSON array of configurations in configuration name order. For each configuration it lists the
configuration id, the configuration name, a JSON array of supported languages, and (optionally) a userDictionary
JSON object. The language defaults to English: ["en"].

Listing configurations is further described in the “NLP Environment” chapter of this guide.

• Domain Details: GET and POST to retrieve detailed information about a specified domain. See GetDomainDetails().

Data returned includes the domain’s ID, name, parameters, and metadata.

– parameters include DefaultConfig (domainname.Configuration), DefinitionClass, and ManagedBy (defaults to
the DefinitionClass).

– metadata includes metadata id, metadata name (defaults to DateIndexed), an array of supported operators, datatype
(DateIndexed is datatype date), storage (defaults to normal), caseSensitive (a boolean value), and hidden (a boolean
value).

4.2.2 Sources

The NLP REST operations for sources are the following:

• Filtered Sources: GET and POST to retrieve all sources that pass a specified filter. By default, returns all sources. See
GetSources().

If the domain exists but contains no sources that pass the filter, returns {"sources":[]}. If there are sources, returns the
id, extId (external ID), metadata (the date and time when the source was indexed), and a snippet of the text for each
source. This snippet consists of two sentences from the text. If the sentences are not consecutive, an ellipsis (three
dots) is specified to indicate this gap. If there two or fewer sentences in the text, the snippet contains the full text.

Filtering sources is further described in the “Filtering Sources” chapter of this guide.

• Sources by Entity: GET and POST to retrieve sources containing a specified entity. See GetSourcesByEntity()

If the domain exists but contains no sources that pass the filter, returns {"sources":[]}. If there are sources, returns the
id, extId (external ID), metadata (the date and time when the source was indexed), and a snippet of the text for each
source. This snippet consists of (at most) two sentences from the text that contain the specified entity. These sentences
are not necessarily in consecutive order.

Filtering sources by entity match is further described in the “Filtering Sources” chapter of this guide.

Using InterSystems Natural Language Processing (NLP) 33

REST Operations

• Sources by CRC: GET and POST to retrieve sources containing a specified CRC. The operations can be used to retrieve
a CRC (concept:relation:concept), a CR (concept:relation), a RC (:relation:concept), or a CC (concept::concept). See
GetSourcesByCRC().

If the domain exists but contains no sources that contain the CRC, returns {"sources":[]}. If there are sources that
contain the CRC, returns the id, extId (external ID), metadata (the date and time when the source was indexed), and a
snippet of the text for each source. This snippet consists of (at most) two sentences from the text that contain the
specified CRC. These sentences are not necessarily in consecutive order.

Note that a CR must be followed by a concept. Therefore the CR pilot:stated returns ”pilot stated the airplane”, pilot
stated he” and “pilot stated \"I then". It does not return “pilot stated that” or “pilot stated to”.

• Similar Sources: GET and POST to retrieve sources similar to a specified source. See GetSimilarSources().

If the domain exists but contains no similar sources, returns {"sources":[]}. If there are similar sources, returns a JSON
array of entities in descending order by similarity score. If there are multiple similar entities that have the same simi-
larity score, they are listed in ID order. For each similar source, returns the id, extId (external ID), score (similarity
score), percentageMatched, percentageNew, numberOfEntitiesInRefSource, numberOfEntitiesInCommon, numberO-
fEntitiesInThisSource, metadata (the date and time when the source was indexed), and a snippet of the text for each
source. This snippet consists of (at most) two sentences from the text that contain similar entities.

Similar sources are further described in the “NLP Queries” chapter of this guide.

• Source Details: GET and POST to retrieve details about a specified source. See GetSourceDetails().

For the specified source returns a virtual boolean, metadata (the date and time when the source was indexed), and the
full text of the source.

• Add a Source: POST to add a source to a domain. See AddSource().

Adding sources are further described in the “Loading Text Data Programmatically” chapter of this guide.

• Delete a Source: DELETE to delete a source from a domain. See DropSource().

Deleting sources are further described in the “Loading Text Data Programmatically” chapter of this guide.

• Source Metadata: POST to update metadata for a specific source. See SetMetadata().

4.2.3 Entities

The NLP REST operations for entities are the following:

• Top Entities: GET and POST to retrieve the top entities in the specified domain. See GetEntities().

If there are no defined sources containing entities, returns {"entities":[]}. If there are entities, returns a JSON array of
entities in descending order by frequency. If there are multiple entities that have the same frequency, they are listed in
ID order. Each entity is listed as a JSON object with key/value pairs for id, value, frequency, and spread.

Top entities are further described in the “NLP Queries” chapter of this guide.

• Similar Entities: GET and POST to retrieve entities similar to a specified string. See GetSimilarEntities().

If there are no similar entities, returns {"entities":[]}. If there are similar entities, returns a JSON array of entities in
descending order by frequency. If there are multiple similar entities that have the same frequency, they are listed in
ID order. Each entity is listed as a JSON object with key/value pairs for id, value, frequency, and spread.

Similar entities are further described in the “NLP Queries” chapter of this guide.

• Related Entities: GET and POST to retrieve entities related to a specified entity. See GetRelatedEntities().

34 Using InterSystems Natural Language Processing (NLP)

REST Interface

If there are no related entities, returns {"entities":[]}. If there are related entities, returns a JSON array of entities in
descending order by proximity. If there are multiple similar entities that have the same proximity, they are listed in ID
order. Each entity is listed as a JSON object with key/value pairs for id, value, and proximity.

Related entities are further described in the “NLP Queries” chapter of this guide.

• Entity Details: GET and POST to retrieve details about a specified entity. See GetEntityDetails().

If the specified entity does not exist in the domain, or the specified domain does not exist, returns
{"id":"","value":"aardvark"}. If the entity is found, returns a JSON object with key/value pairs for id, value, and the
subarrays metricsAsConcept, metricsAsRelation, and metricsAsAny. Each of these subarrays lists frequency, spread,
and tfidf.

If the entity only occurs as a concept, the metricsAsRelation values are 0 and the metricsAsAny values are the same
as the metricsAsConcept values. If the entity only occurs as a relation, the metricsAsConcept values are 0 and the
metricsAsAny values are the same as the metricsAsRelation values. If the entity occurs as both a concept and a relation,
the metricsAsAny values for frequency and spread are the totals of their concept and relation values. The tfidf values
is calculated from the corresponding concept and relation values.

4.2.4 Sentences

The NLP REST operations for sentences are the following:

• Sentences by Entity: GET and POST to retrieve sentences containing a specified entity. See GetSentencesByEntity().

If there are no sentences containing the specified entity, returns {"sentences":[]}. If there are sentences that contain
the entity, returns a JSON array of sentences. For each sentence lists the sentence id, the source id, the text of the sentence,
and the parts of the sentence. Parts are listed in sentence order, with each part an element of the parts array. For each
part in the part array it lists partId, literal (with original letter case), role (concept, relation, pathRelevant, or nonRelevant),
entityId, and entity (in lowercase letters). If the part is a nonRelevant, no entityId or entity are listed.

• Sentence Details: GET and POST to retrieve details about a specified sentence. See GetSentenceDetails().

If the specified sentence exists, returns the sentence id, the parts of the sentence, the text, and the sourceId. Parts are
listed in sentence order, with each part an element of the parts array. For each part in the part array it lists partId, literal
(with original letter case), role (concept, relation, pathRelevant, or nonRelevant), entityId, and entity (in lowercase
letters). If the part is a nonRelevant, no entityId or entity are listed.

4.2.5 Paths and CRCs

The NLP REST operations for Paths and CRCs (concept-relation-concept strings) are the following:

• Top CRCs: GET and POST to retrieve the top CRCs in the specified domain. See GetCRCs().

If there are no sources containing CRCs, returns {"crcs":[]}. Returns a JSON array of CRCs in descending order by
frequency. If there are multiple CRCs that have the same frequency, they are listed in ID order. For each CRC it lists
the id, master concept, relation, slave concept, frequency, and spread. For some CRCs, the master or the slave values
are "" (the empty string. For example, "master":"" would occur in a CRC that begins with the relation “according
to...” or “during”; "slave":"" would occur in a CRC with a relation such as “occurred” or “said”.

• CRCs by Entity: GET and POST to retrieve CRCs containing a specified entity. See GetCRCsByEntity().

If there are no sources with CRCs containing a specified entity, returns {"crcs":[]}. Otherwise, returns a JSON array
of CRCs in descending order by frequency. If there are multiple CRCs that have the same frequency, they are listed
in ID order. For each CRC it lists the id, master concept, relation, slave concept, frequency, and spread. For some
CRCs, the master or slave key:value pair is omitted.

• Paths by Entity: GET and POST to retrieve Paths containing a specified entity. See GetPathsByEntity().

Using InterSystems Natural Language Processing (NLP) 35

REST Operations

If there are no sources with paths containing a specified entity, returns {"paths":[]}. Otherwise, returns a JSON array
of paths, each consisting of a path id, an entities array, a sourceId and a sentenceId. The entities array contains for each
entity an entity id, a partId, an entity value, a role specifier (concept, relation, or pathRelevant), and (optionally) an
attributes array. An attributes array consists of type, (negation), level (path, word), and, if level is word, a words
key:value pair. For example, "attributes":[{"type":"negation","level":"path"}]}.

4.2.6 Dictionaries and Matching

The NLP REST operations for dictionaries are the following:

• Create Dictionary: POST to create a new dictionary. See CreateDictionary().

Creating a dictionary is further described in the “Smart Matching: Creating a Dictionary” chapter of this guide.

• Retrieve Dictionaries: GET and POST to retrieve the dictionaries defined for the specified domain. See
GetDictionaries().

If there are no defined dictionaries, returns {"dictionaries":[]}.

• Retrieve Dictionary: GET and POST to retrieve the detailed contents of a specified dictionary. See
GetDictionaryDetails().

• Drop Dictionary: DELETE to drop (delete) a specified dictionary. See DropDictionary().

• Add Items: POST to add one or more items to a dictionary. See CreateDictionaryItems().

• Item Details: GET and POST to retrieve the detailed contents of a dictionary item. See GetDictionaryItemDetails().

• Drop Item: DELETE to drop (delete) a specified dictionary item. See DropDictionaryItem().

• Add Terms: POST to add one or more terms to a dictionary item. See CreateDictionaryTerms().

• Drop Term: DELETE to drop (delete) a specified term from a dictionary item. See DropDictionaryTerm().

The NLP REST operations for matching operations using a dictionary are the following:

• Match Sources: GET and POST to match all sources against a dictionary. See MatchAll().

Filtering sources by dictionary match is further described in the “Filtering Sources” chapter of this guide.

• Match Source: GET and POST to match a specified source against a dictionary. See GetMatchesBySource().

• Dictionary Matches: GET and POST to retrieve all dictionary matches for a specified source. May specify more than
one dictionary. See MatchSource().

• Item Matches: GET and POST to retrieve all matches for a specified dictionary item. See GetMatchesByItem().

4.2.7 Blacklists

The NLP REST operations for blacklists are the following:

• List Blacklists: GET and POST to retrieve a list of all blacklists for the domain. See GetBlacklists().

If there are no defined blacklists, returns {"blacklists":[]}. If there are one or more blacklists, returns a JSON array of
blacklists, each blacklist listed as a JSON object with key/value pairs for id, name, and a JSON array of elements.

• Create Blacklist: GET and POST to create a new blacklist. See CreateBlacklist().

Creating a blacklist is further described in the “Blacklists” chapter of this guide.

• Retrieve Blacklist: GET and POST to retrieve the contents of a specified blacklist. See GetBlacklistDetails().

36 Using InterSystems Natural Language Processing (NLP)

REST Interface

Retrieves the blacklist specified by blacklist id as a JSON object with key/value pairs for id, name, and a JSON array
of elements.

• Drop Blacklist: DELETE to drop (delete) a specified blacklist. See DropBlacklist().

• Clear Blacklist: GET and POST to clear (delete) all of the contents of a specified blacklist. See ClearBlacklist().

• Add Entity: GET and POST to add an entity to a specified blacklist. See AddStringToBlacklist().

• Remove Entity: GET and POST to remove an entity from a specified blacklist. See RemoveStringFromBlacklist().

Using InterSystems Natural Language Processing (NLP) 37

REST Operations

5
Alternatives for Creating an NLP
Environment

Before using NLP on source data, you must create an instance of the objects that define the NLP environment. You then
load source texts into this environment. The recommended way to do this is to use Domain Architect. This chapter describes
the NLP environment objects in greater depth, and provides alternative ways to create and extend them.

The following comprise the NLP environment:

• Domain: establishes the logical space for NLP operations. Specifying a domain is mandatory.

• Configuration: establishes the language environment for source document content. Specifying a Configuration is
optional. If not specified, NLP provides a default. The Domain Architect allows you to define the language environment
for a domain; this chapter describes how to create domain-independent Configurations, as well as additional features
and options.

• UserDictionary: establishes a set of text substitutions to apply when loading source texts into NLP. A UserDictionary
is also used for user-defined attribute terms, such terms that indicate a positive sentiment or a negative sentiment
attribute. A UserDictionary is supplied to one or more Configurations. Specifying a UserDictionary is optional. If not
specified, no UserDictionary is used.

You can create multiple instances of Domains, Configurations, and UserDictionaries. These environment objects are
independent of one another, and are independent of any specified set of source data.

5.1 NLP Domains
All NLP operations occur within a Domain. A domain is a NLP defined unit within an InterSystems IRIS Data Platform™
namespace. All source data to be used by NLP is listed and loaded into a domain. An InterSystems IRIS namespace can
contain multiple NLP domains.

You can define, modify and delete an NLP domain in three ways:

• Defining a domain using the Domain Architect. This is the easiest way to define a domain and to specify its languages,
metadata, and data to be loaded.

• Defining a domain as a subclass of %iKnow.DomainDefinition. This option provides a powerful and fully-featured way
to define a domain and specify its Configuration settings, metadata, and data to be loaded.

• Defining a domain programmatically using the %iKnow.Domain class methods and properties.

Using InterSystems Natural Language Processing (NLP) 39

5.1.1 Defining a Domain Using DomainDefinition

When a user creates and compiles a class inheriting from %iKnow.DomainDefinition, the compiler will automatically create
an NLP domain corresponding to the settings specified in XML representation in the class’s Domain XData block. The
user can specify static elements, such as domain parameters, metadata field definitions, and an assigned Configuration, all
of which are created automatically at compile time. In addition, the user can specify sources of text data to be loaded into
the domain. InterSystems IRIS uses this source information to generate a dedicated %Build() method in a new class named
[classname].Domain. This %Build() method can then be used to load the specified data into the domain.

Use the following steps to define a domain by inheriting from %iKnow.DomainDefinition:

1. In Studio, select the desired namespace (File->Change Namespace), then create a new class definition (File->New,
select the Class Definition icon from the General tab). This invokes the New Class Wizard.

2. In the New Class Wizard specify a Package Name and Class Name of your choice. Press Next. In the Class Type box,
select Extends and specify %iKnow.DomainDefinition as the name of the superclass. Press Finish.

3. In Studio, select Class->Refactor->Override. Select the XData tab. Select the Domain icon. Press OK. This creates an
XData block.

4. Place the cursor within the XData block curly braces and type “<”. Studio Assist immediately begins offering XML
code options. Specify a domain name of your choice. You must specify at minimum the following:

{
 <domain name="AviationEvents">
 </domain>
}

Using XML syntax and Studio Assist options you can add other properties within the XData block (as described below).
Minimally, you need a <data> </data> tags, and within them a data source. For example:

{
 <domain name="AviationEvents">
 <data>
 <files path="C:\MyDocs\" />
 </data>
 </domain>
}

5. In Studio, save the file (in this case as “MyDomain”), then select Build->Compile. This creates the domain.

The following is an example of this kind of domain definition:

Class Aviation.MyDomain Extends %iKnow.DomainDefinition
{
/// An XML representation of the domain this class defines.
XData Domain [XMLNamespace = "http://www.intersystems.com/iknow"]
 {
 <domain name="AviationEvents">
 <parameter name="Status" value="1" />
 <configuration name="MyConfig" detectLanguage="1" languages="en,es" />
 <parameter name="DefaultConfig" value="MyConfig" />
 <metadata>
 <field name="EventDate" dataType="DATE"/>
 <field name="Type" dataType="STRING" />
 </metadata>
 <data dropBeforeBuild="true">
 <files path="C:\MyDocs\" encoding="utf-8" recursive="1" extensions="txt"
 configuration="MyConfig" />
 <query sql="SELECT %ID,EventDate,Type,NarrativeFull
 FROM Aviation.Event"
 idField="ID" groupField="ID" dataFields="NarrativeFull"
 metadataFields="EventDate,Type" metadataColumns="EventDate,Type" />
 </data>
 </domain>
 }
 }

40 Using InterSystems Natural Language Processing (NLP)

Alternatives for Creating an NLP Environment

At compile-time, this definition creates a domain "AviationEvents", with a Status parameter set to 1, and two metadata
fields. It defines and assigns to the domain a Configuration "MyConfig" for processing English (en) and Spanish (es) texts.

This definition specifies the files to be loaded into this domain. It will load text (.txt) files from the C:\MyDocs\ directory,
and it will load InterSystems SQL data from the Aviation.Event table. Refer to the %iKnow.Model.listFiles and
%iKnow.Model.listQuery class properties for details.

The system generates a %Build() method in a dependent class named Aviation.MyDomain.Domain that contains the logic
to load data from the C:\MyDocs directory and the Aviation.Event table.

To load the specified text data sources into this domain:

 SET stat=##class(Aviation.MyDomain).%Build()

After using %Build(), you can check for errors:

 DO $SYSTEM.iKnow.ListErrors("AviationEvents",0)

This lists three types of errors: errors, failed sources, and warnings.

To display the domains defined in the current namespace and the number of sources loaded for each domain:

 DO $SYSTEM.iKnow.ListDomains()

To display the metadata fields defined for this domain:

 DO $SYSTEM.iKnow.ListMetadata("AviationEvents")

NLP assigns every domain one metadata field: DateIndexed. You can define additional metadata fields.

You can specify a <matching> element in the domain definition. The <matching> element describes dictionary information
and specifies whether or not to automatically match loaded sources to these dictionaries. InterSystems IRIS performs basic
validation on these objects during class compilation, but because they are loaded as part of the %Build() method, some
name conflicts might only arise at runtime. Refer to the %iKnow.Model.matching class properties for details.

You can specify a <metrics> element in the domain definition. The <metrics> element adds custom metrics to the domain.
No call to %iKnow.Metrics.MetricDefinition.Register() is required, because this is automatically performed by the
Domain Definition code at compile time. Refer to the %iKnow.Model.metrics class properties for details.

5.1.2 Defining a Domain Programmatically

To define a new domain using class methods, invoke the %iKnow.Domain.%New() persistent method, supplying the
domain name as the method parameter. A domain name can be any valid string; domain names are not case-sensitive. The
name you assign to this domain must be unique for the current namespace. This method returns a domain object reference
(oref) which is unique for all namespaces of the InterSystems IRIS instance. You must then save this instance using the
%Save() method to make it persistent. The domain Id property (an integer value) is not defined until you save the instance
as a persistent object, as shown in the following example:

CreateDomain
 SET domOref=##class(%iKnow.Domain).%New("FirstExampleDomain")
 WRITE "Id before save: ",domOref.Id,!
 DO domOref.%Save()
 WRITE "Id after save: ",domOref.Id,!
CleanUp
 DO ##class(%iKnow.Domain).%DeleteId(domOref.Id)
 WRITE "All done"

There are two ways to create a domain if it doesn’t exist, or open the domain if it does exist:

• Use Exists() to determine if the domain already exists. If the domain exists, use Open() to open it. If the domain doesn’t
exist, use %New() to create it.

• Use GetOrCreateId() to create the domain if it doesn’t exist, or open the domain if it does exist.

Using InterSystems Natural Language Processing (NLP) 41

NLP Domains

The following example checks whether a domain exists. If the domain doesn’t exist, the program creates it. If the domain
does exist, the program opens it. For the purpose of demonstration, this program then randomly either deletes or doesn’t
delete the domain.

DomainCreateOrOpen
 SET domn="mydomain"
 IF (##class(%iKnow.Domain).Exists(domn))
 { WRITE "The ",domn," domain already exists",!
 SET domo=##class(%iKnow.Domain).Open(domn)
 SET domId=domo.Id
 }
 ELSE {
 SET domo=##class(%iKnow.Domain).%New(domn)
 DO domo.%Save()
 SET domId=domo.Id
 WRITE "Created the ",domn," domain",!
 WRITE "with domain ID ",domId,! }
ContainsData
 SET x=domo.IsEmpty()
 IF x=1 {WRITE "Domain ",domn," contains no data",!}
 ELSE {WRITE "Domain ",domn," contains data",!}
CleanupForNextTime
 SET rnd=$RANDOM(2)
 IF rnd {
 SET stat=##class(%iKnow.Domain).%DeleteId(domId)
 IF stat {WRITE "Deleted the ",domn," domain" }
 ELSE { WRITE "Domain delete error:",stat }
 }
 ELSE {WRITE "No delete this time" }

The following example uses the GetOrCreateId() shorthand method to create a domain if it doesn’t exist, or open the
domain if it does exist. For the purpose of demonstration, this program then randomly either deletes or doesn’t delete the
domain.

DomainGetOrCreate
 SET domn="mydomain"
 SET domId=##class(%iKnow.Domain).GetOrCreateId(domn)
 SET domoref=##class(%iKnow.Domain).%OpenId(domId)
 WRITE "The ",domn," domain with domain ID ",domId,!
ContainsData
 SET x=domoref.IsEmpty()
 IF x=1 {WRITE "Domain ",domn," contains no data",!}
 ELSE {WRITE "Domain ",domn," contains data",!}
CleanupForNextTime
 SET rnd=$RANDOM(2)
 IF rnd {
 SET stat=##class(%iKnow.Domain).%DeleteId(domId)
 IF stat {WRITE "Deleted the ",domn," domain" }
 ELSE { WRITE "Domain delete error:",stat }
 }
 ELSE {WRITE "No delete this time" }

The %iKnow.Domain class methods that create or open a domain are provided with an output %Status parameter. This
parameter is set when the current system does not have license access to NLP, and thus cannot create or open an NLP
domain.

5.1.3 Setting Domain Parameters

Domain parameters govern the behavior of a wide variety of NLP operations. The specific parameters are described where
applicable throughout this manual. For a list of available domain parameters, refer to the Appendix “Domain Parameters” .

Note: In the examples that follow, domain parameters are referenced by their macro equivalent (for example, $$$IKP-
FULLMATCHONLY), not their parameter name (For example, FullMatchOnly). The recommended programming
practice is to use these %IKPublic macros rather than the parameter names.

All domain parameters take a default value. Commonly, NLP will give optimal results without specifically setting any
domain parameters. NLP determines the value for each parameter as follows:

42 Using InterSystems Natural Language Processing (NLP)

Alternatives for Creating an NLP Environment

1. If you have specified a parameter value for the current domain, that value is used. Note that some parameters can only
be set before loading data into a domain, while others can be set at any time. You can use the IsEmpty() method to
determine if any data has been loaded into the current domain.

2. If you have specified a system-wide parameter value, that value is used as a default for all domains, except for a domain
where a domain-specific value has been set.

3. If you have not specified a value for a parameter at either the domain level or the system level, NLP uses its default
value for that parameter.

5.1.3.1 Setting Parameters for the Current Domain

Once you have created a domain, you can set domain parameters for this specific domain using the SetParameter() instance
method. SetParameter() returns a status indicating whether the parameter specified is valid and was set. GetParameter()
returns the parameter value and the level at which the parameter was set (DEFAULT, DOMAIN, or SYSTEM). Note that
GetParameter() does not check the validity of a parameter name; it returns DEFAULT for any parameter name it cannot
identify as being set at the domain or system level.

The following example gets the default for the SortField domain parameter, sets this parameter for the current domain, then
gets the value you set and the level at which it was set (DOMAIN):

#Include %IKPublic
DomainCreate
 SET domn="paramdomain"
 SET domo=##class(%iKnow.Domain).%New(domn)
 WRITE "Created the ",domn," domain",!
 DO domo.%Save()
DomainParameters
 SET sfval=domo.GetParameter($$$IKPSORTFIELD,.sf)
 WRITE "SortField before SET=",sfval," ",sf,!
 IF sfval=0 {WRITE "changing SortByFrequency to SortBySpread",!
 SET stat=domo.SetParameter($$$IKPSORTFIELD,1)
 IF stat=0 {WRITE "SetParameter failed" QUIT} }
 WRITE "SortField after SET=",domo.GetParameter($$$IKPSORTFIELD,.str)," ",str,!!
CleanupForNextTime
 SET stat=##class(%iKnow.Domain).%DeleteId(domo.Id)
 IF stat {WRITE "Deleted the ",domn," domain" }
 ELSE { WRITE "Domain delete error:",stat }

5.1.3.2 Setting Parameters System-wide

You can set domain parameters for all domains system-wide using the SetSystemParameter() method. A parameter set
using this method immediately becomes the default parameter value for all existing and subsequently created domains in
all namespaces. This system-wide default is overridden for an individual domain using the SetParameter() instance method.

Note: The SortField and Jobs domain parameters are exceptions. Setting these parameters at the system level has no
effect on the domain settings.

You can determine if a domain parameter has been established as the system default using the GetSystemParameter()
method. The initial value for a system-wide parameter is always the null string (no default).

If you wish to remove a system-wide default setting for a domain parameter, use the UnsetSystemParameter() method.
Once a system-wide parameter setting has been established, you must unset it before you can set it to a new value.
UnsetSystemParameter() returns a status of 1 (success) even when there was no parameter default value to unset.

The following example establishes a FullMatchOnly system-wide parameter value. If no system-wide default has been
established, the program sets this system-wide parameter. If a system-wide default has been established, the program unsets
this system-wide parameter, then sets it.

#Include %IKPublic
SystemwideParameterSet
 /* Initial set */
 SET stat=##class(%iKnow.Domain).SetSystemParameter($$$IKPFULLMATCHONLY,1)
 IF stat=1 {
 WRITE "FullMatchOnly set system-wide to: "

Using InterSystems Natural Language Processing (NLP) 43

NLP Domains

 WRITE ##class(%iKnow.Domain).GetSystemParameter($$$IKPFULLMATCHONLY),!
 QUIT }
 ELSE {
 /* Unset and Reset */
 SET stat=##class(%iKnow.Domain).UnsetSystemParameter($$$IKPFULLMATCHONLY)
 IF stat=1 {
 SET stat=##class(%iKnow.Domain).SetSystemParameter($$$IKPFULLMATCHONLY,1)
 IF stat=1 {
 WRITE "FullMatchOnly was unset system-wide",!,"then set to: "
 WRITE ##class(%iKnow.Domain).GetSystemParameter($$$IKPFULLMATCHONLY),!!
 GOTO CleanUpForNextTime }
 ELSE {WRITE "System Parameter set error",stat,!}
 }
 ELSE {WRITE "System Parameter set error",stat,!}
 }
CleanUpForNextTime
 SET stat=##class(%iKnow.Domain).UnsetSystemParameter($$$IKPFULLMATCHONLY)
 IF stat '=1 {WRITE " Unset error status:",stat}

The following example shows that setting a system-wide parameter value immediately sets the parameter value for all
domains. After setting a system-wide parameter value, you can override this value for individual domains:

#Include %IKPublic
SystemwideParameterUnset
 SET stat=##class(%iKnow.Domain).UnsetSystemParameter($$$IKPFULLMATCHONLY)
 WRITE "System-wide setting
FullMatchOnly=",##class(%iKnow.Domain).GetSystemParameter($$$IKPFULLMATCHONLY),!!
Domain1Create
 SET domn1="mysysdomain1"
 SET domo1=##class(%iKnow.Domain).%New(domn1)
 DO domo1.%Save()
 SET dom1Id=domo1.Id
 WRITE "Created the ",domn1," domain ",dom1Id,!
 WRITE "FullMatchOnly=",domo1.GetParameter($$$IKPFULLMATCHONLY,.str)," ",str,!!
SystemwideParameterSet
 SET stat=##class(%iKnow.Domain).SetSystemParameter($$$IKPFULLMATCHONLY,1)
 IF stat=0 {WRITE "SetSystemParameter failed" QUIT}
 WRITE "Set system-wide FullMatchOnly=",##class(%iKnow.Domain).GetSystemParameter($$$IKPFULLMATCHONLY),!!
Domain2Create
 SET domn2="mysysdomain2"
 SET domo2=##class(%iKnow.Domain).%New(domn2)
 DO domo2.%Save()
 SET dom2Id=domo2.Id
 WRITE "Created the ",domn2," domain ",dom2Id,!
 WRITE "Domain setting FullMatchOnly=",domo2.GetParameter($$$IKPFULLMATCHONLY,.str)," ",str,!!
DomainParameters
 WRITE "New domain ",dom2Id," FullMatchOnly=",domo2.GetParameter($$$IKPFULLMATCHONLY,.str)," ",str,!
 WRITE "Existing domain ",dom1Id," FullMatchOnly=",domo1.GetParameter($$$IKPFULLMATCHONLY,.str),"
",str,!!
OverrideForOneDomain
 SET stat=domo1.SetParameter($$$IKPFULLMATCHONLY,0)
 IF stat=0 {WRITE "SetParameter failed" QUIT}
 WRITE "Domain override FullMatchOnly=",domo1.GetParameter($$$IKPFULLMATCHONLY,.str)," ",str,!
CleanupForNextTime
 SET stat=##class(%iKnow.Domain).%DeleteId(dom1Id)
 SET stat=##class(%iKnow.Domain).%DeleteId(dom2Id)
 SET stat=##class(%iKnow.Domain).UnsetSystemParameter($$$IKPFULLMATCHONLY)

5.1.4 Assigning to a Domain

Once you have created a domain and (optionally) specified its domain parameters, you can assign various components to
that domain:

• Source Data: After creating a domain, you commonly will load a number (usually a large number) of text sources into
a domain; this generates NLP indexed data within that domain. Loading text sources is a required precondition for
most NLP operations. A variety of text sources are supported, including files, SQL fields, and text strings. You can
specify SQL fields of data type %String or %Stream.GlobalCharacter (character stream data). After NLP has indexed
a data source, the original data source can be removed without affecting NLP processing. Changing a data source has
no effect on NLP processing, unless you re-load that data source to update the NLP indexed data in the domain.

• Filters: After creating a domain, you can optionally create one or more filters for that domain. A filter specifies criteria
used to exclude some of the loaded sources from a query. Thus a filter allows you to perform NLP operations on a
subset of the data loaded in the domain.

44 Using InterSystems Natural Language Processing (NLP)

Alternatives for Creating an NLP Environment

• Metadata: After creating a domain, you can optionally specify one or more metadata fields that you can use as criteria
for filtering sources. A metadata field is data associated with a source that is not NLP indexed data. For example, the
date and time that a text source was loaded is a metadata field for that source. Metadata fields must be defined before
loading text sources into a domain.

• Blacklists: After creating a domain, you can optionally create one or more blacklists for that domain. A blacklist is a
list of entities (such as words or phrases) that you do not want a query to return. Thus a blacklist allows you to perform
NLP operations that ignore specific data entities in data sources loaded in the domain.

• Dictionaries: After creating a domain, you can optionally create one or more dictionaries for that domain. A dictionary
contains entities that are used to match the NLP indexed data.

These components are defined using various NLP classes and methods. You can also use the InterSystems IRIS Domain
Architect to define metadata fields, load sources, and define blacklists and dictionaries.

Metadata fields must be defined before loading sources. Filters, blacklists, and dictionaries can be defined or modified at
any time.

5.1.5 Deleting All Data from a Domain

Deleting or changing an original source text has no effect on the source data listed and loaded from that text into a NLP
domain. You must explicitly add or delete a source to the set of indexed sources.

The %DeleteId() persistent method deletes a domain and all source data that has been listed and loaded in that domain.
You can use the DropData() method to delete all source data that has been loaded into a domain without deleting the
domain itself. Either method deletes all indexed source data, allowing you to start over with a new set of data sources.

Note: When deleting a domain that contains a significant number of sources, use DropData() to delete the data before
using %DeleteId() to delete the domain. If you use %DeleteId() to delete a domain while it still has data in it,
InterSystems IRIS will delete the data, but it will journal each data deletion, even if journaling has been disabled.
Deleting the data, and then deleting the domain prevents the generation of these large journal files.

You can use the IsEmpty() method to determine if any data has been loaded into a domain.

The following example demonstrates deleting the data from a domain. If the named domain doesn’t exist, the program
creates the domain. If the named domain does exist, the program tests for the presence of data. If there is data in the domain,
the program opens the domain and deletes the data.

DomainCreateOrOpen
 SET dname="mytestdomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 IF domoref.IsEmpty() {GOTO RestOfProgram}
 ELSE {GOTO DeleteData }
 }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO RestOfProgram }
DeleteData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!
 GOTO RestOfProgram }
 ELSE { WRITE "DropData error",!
 QUIT}
RestOfProgram
 WRITE "The ",dname," domain contains no data"

Using InterSystems Natural Language Processing (NLP) 45

NLP Domains

5.1.6 Listing All Domains

You can use the GetAllDomains query to list all current domains in all namespaces. This is shown in the following example:

 SET stmt=##class(%SQL.Statement).%New()
 SET status=stmt.%PrepareClassQuery("%iKnow.Domain","GetAllDomains")
 IF status'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(status) QUIT}
 SET rset= stmt.%Execute()
 WRITE !,"Domains in all namespaces",!
 DO rset.%Display()

Each domain is listed on a separate line, using the following format: domainId:domainName:namespace:version.

The Version property is an integer that shows what version of NLP data structure was used when the domain was created.
The NLP system version number changes when a release contains a change to the NLP data structures. Therefore, a new
version of InterSystems IRIS or the introduction of new NLP features may not change the NLP system version number. If
the Version property value for a domain is not the current NLP system version, you may wish to upgrade the domain to
take advantage of the latest features of NLP. See Upgrading NLP Data in the “NLP Implementation” chapter.

By default, GetAllDomains lists all the current domains for all namespaces. You can specify a boolean argument in
%Execute() to limit the listing of domains to the current namespace, as shown in the following example:

 SET stmt=##class(%SQL.Statement).%New()
 SET status=stmt.%PrepareClassQuery("%iKnow.Domain","GetAllDomains")
 IF status'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(status) QUIT}
 SET rset= stmt.%Execute(1)
 WRITE !,"Domains in all namespaces",!
 DO rset.%Display()

A boolean value of 1 limits listing to domains in the current namespace. A boolean value of 0 (the default) lists all domains
in all namespaces. (Note: listed Version property values may not be correct for domains other than the current domain.)

You can also list all domains in the current namespace using:

 DO ##class(%SYSTEM.iKnow).ListDomains()

This method lists the domain Ids, domain names, number of sources, and the domain version number.

5.1.7 Renaming a Domain

You can use the Rename() class method to change the name of an existing domain within the current namespace, as shown
in the following example:

 SET stat=##class(%iKnow.Domain).Rename(oldname,newname)
 IF stat=1 {WRITE "renamed ",oldname," to ",newname,!}
 ELSE {WRITE "no rename",oldname," is unchanged",! }

Renaming a domain changes the name used to open the domain, assigning the existing Domain Id to the new name. Rename()
does not change the name of a current instance of the domain. For a rename to occur, the old domain name must exist and
the new domain name must not exist.

5.1.8 Copying a Domain

You can copy an existing domain to a new domain in the current namespace by using the CopyDomain() method of the
%iKnow.Utils.CopyUtils class. The CopyDomain() method copies a domain definition to a new domain, assigning a unique
domain name and domain Id; the existing domain is unchanged. If the new domain does not exist, this method creates a
new domain. By default, this method copies the domain parameter settings and assigned domain components from the
existing domain to the copy, if these components are present.

By default, the CopyDomain() method copies the source data from the existing domain to the copy. However, if source
data copying is requested and no source data is present in the existing domain, the CopyDomain() operation fails.

46 Using InterSystems Natural Language Processing (NLP)

Alternatives for Creating an NLP Environment

The following example copies a the domain named “mydomain” and its parameter settings and source data to a new domain
named “mydupdomain”. Because “mydomain” contains no source data, the 3rd argument (which specifies whether to copy
source data) is set to 0:

DomainMustExistToBeCopied
 SET olddom="mydomain"_$PIECE($H,",",2)
 SET domo=##class(%iKnow.Domain).%New(olddom)
 DO domo.%Save()
 IF (##class(%iKnow.Domain).Exists(olddom))
 {WRITE "Old domain exists, proceed with copy",!!}
 ELSE {WRITE "Old domain does not exist" QUIT}
CopyDomain
 SET newdom="mydupdomain"
 IF (##class(%iKnow.Domain).Exists(newdom))
 {WRITE "Domain copy overwriting domain ",newdom,!}
 ELSE {WRITE "Domain copy creating domain ",newdom,!}
 SET stat=##class(%iKnow.Utils.CopyUtils).CopyDomain(olddom,newdom,0)
 IF stat=1 {WRITE !!,"Copied ",olddom," to ",newdom," copying all assignments",!!}
 ELSE {WRITE "Domain copy failed with status ",stat,!}
CleanUp
 SET stat=##class(%iKnow.Domain).%DeleteId(domo.Id)
 WRITE "Deleted the old domain",!
 IF $RANDOM(2) {
 SET newId=##class(%iKnow.Domain).GetOrCreateId("mydupdomain")
 SET stat=##class(%iKnow.Domain).%DeleteId(newId)
 WRITE "Deleted the new domain" }
 ELSE {WRITE "No new domain delete this time" }

The CopyDomain() method allows you to quickly copy all of the domain settings, source data, and assigned components
of an existing domain to a new domain. It provides boolean options for all-or-nothing copying of assigned components.
Other methods in the %iKnow.Utils.CopyUtils class provide greater control in specifying which assigned components to copy
from one existing domain to another.

5.2 NLP Configurations
An NLP configuration specifies behavior for handling source documents. It is only used during the source data loading
operation. A configuration is specific to its namespace; you can create multiple configurations within a namespace. NLP
assigns each configuration in a namespace a configuration Id, a unique integer. Configuration Id values are not reused. You
can apply the same configuration to different domains and source text loads. Defining or using an NLP configuration is
optional; if you don’t specify a configuration, NLP uses the property defaults.

You can define an NLP configuration in two ways:

• Using the %iKnow.Configuration class methods and properties, as described in this chapter.

• Using the Domain Architect to specify supported languages as part of domain definition.

5.2.1 Defining a Configuration

You can define a configuration using the %New() persistent method of the %iKnow.Configuration class.

You can determine if an NLP configuration with that name already exists by invoking the Exists() method. If the configu-
ration exists, you can open it using the Open() method, as shown in the following example:

 IF ##class(%iKnow.Configuration).Exists("EnFr") {
 SET cfg=##class(%iKnow.Configuration).Open("EnFr") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("EnFr",1,$LB("en","fr"))
 DO cfg.%Save() }

5.2.2 Setting Configuration Properties

A configuration defines the following properties:

Using InterSystems Natural Language Processing (NLP) 47

NLP Configurations

• Name: A configuration name can be any valid string; configuration names are not case-sensitive. The name you assign
to this configuration must be unique for the current namespace.

• DetectLanguage: A boolean value that specifies whether to use automatic language identification if more that one
language is specified in the Languages property. Because this option may have a significant effect on performance it
should not be set unless needed. The default is 0 (do not use automatic language identification).

• Languages: What language(s) the source documents contain, and therefore which languages to test for and which language
models to apply. The available options are Dutch (nl), English (en), French (fr), German (de), Japanese (ja), Portuguese
(pt), Russian (ru), Spanish (es), Swedish (sv), and Ukrainian (uk). The default is English (en). Languages are always
specified using their ISO 639-1 two-letter abbreviation. This property value is specified as an InterSystems IRIS list
of strings (using $LISTBUILD).

• UserDictionary: Either the name of a defined UserDictionary object or the file path location of defined UserDictionary
file. A UserDictionary contains user-defined substitution pairs that NLP applies to the source text entities during the
load operation. This property is optional; the default is the null string.

• Summarize: a boolean value that specifies whether to store summary information when loading source texts. If set to
1, source information is generated that NLP requires to generate summaries of the loaded source texts. If set to 0, no
summaries can be generated for the sources processed with this Configuration object. Setting this option to 1 is generally
recommended. The default is 1.

All configuration properties (except the Name) are assigned default values. You can get or set a configuration property by
using property dispatch:

 IF cfgOref.DetectLanguage=0 {
 SET cfgOref.DetectLanguage=1
 DO cfgOref.%Save() }

Note that you must first %Save() the newly created configuration before you can change its properties using property dispatch,
and then you must %Save() the configuration after changing the property values.

The following example creates a configuration that supports English and French with automatic language identification. It
then changes the configuration to support English and Spanish:

OpenOrCreateConfiguration
 SET myconfig="Bilingual"
 IF ##class(%iKnow.Configuration).Exists(myconfig) {
 SET cfg=##class(%iKnow.Configuration).Open(myconfig)
 WRITE "Opened existing configuration ",myconfig,! }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New(myconfig,1,$LB("en","fr"))
 DO cfg.%Save()
 WRITE "Created new configuration ",myconfig,! }
GetLanguages
 WRITE "that supports ",$LISTTOSTRING(cfg.Languages),!
SetConfigParameters
 SET cfg.Languages=$LISTBUILD("en","sp")
 DO cfg.%Save()
 WRITE "changed ",myconfig," to support ",$LISTTOSTRING(cfg.Languages),!
CleanUpForNextTime
 SET rnd=$RANDOM(2)
 IF rnd {
 SET stat=##class(%iKnow.Configuration).%DeleteId(cfg.Id)
 IF stat {WRITE "Deleted the ",myconfig," configuration" }
 }
 ELSE {WRITE "No delete this time",! }

For a description of using multiple languages and automatic language identification, refer to the “Language Identification”
chapter of this manual.

5.2.3 Using a Configuration

You can apply a defined configuration in any of the following ways:

• Defining the DefaultConfig domain parameter.

48 Using InterSystems Natural Language Processing (NLP)

Alternatives for Creating an NLP Environment

• Specifying the configuration as the first argument of the Init() instance method to initialize the Lister instance and
override the configuration default.

• Invoking %iKnow.Source.Lister.SetConfig().

• Specifying the configuration as an argument of the loader.ProcessBuffer() or loader.ProcessVirtualBuffer() method.

5.2.4 Listing All Configurations

You can use the GetAllConfigurations query to list all defined configurations in the current namespace. This is shown in
the following example:

 SET stmt=##class(%SQL.Statement).%New()
 SET status=stmt.%PrepareClassQuery("%iKnow.Configuration","GetAllConfigurations")
 IF status'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(status) QUIT}
 SET rset= stmt.%Execute()
 WRITE "The current namespace is: ",$NAMESPACE,!
 WRITE "It contains the following configurations: ",!
 DO rset.%Display()

Each configuration is listed on a separate line, listing the configuration Id followed by the configuration parameter values.
Listed values are separated by colons. If the configuration is defined with a list of supported languages, GetAllConfigurations
displays these language abbreviations separated by commas.

You can also list all configurations in the current namespace using:

 DO ##class(%SYSTEM.iKnow).ListConfigurations()

5.2.5 Using a Configuration to Normalize a String

Using a defined NLP configuration, you can perform NLP text normalization on a string using the Normalize() method.
This method both normalizes the string characters and (optionally) applies a UserDictionary, as shown in the following
example:

DefineUserDictionary
 SET time=$PIECE($H,",",2)
 SET udname="Abbrev"_time
 SET udict=##class(%iKnow.UserDictionary).%New(udname)
 DO udict.%Save()
 DO udict.AddEntry("Dr.","Doctor")
 DO udict.AddEntry("Mr.","Mister")
 DO udict.AddEntry("\&\","and")
DisplayUserDictionary
 DO udict.GetEntries(.dictlist)
 SET i=1
 WHILE $DATA(dictlist(i)) {
 WRITE $LISTTOSTRING(dictlist(i),",",1),!
 SET i=i+1 }
 WRITE "End of UserDictionary",!!
DefineConfiguration
 SET cfg=##class(%iKnow.Configuration).%New("EnUDict"_time,0,$LB("en"),udname)
 DO cfg.%Save()
NormalizeAString
 SET mystring="...The Strange Case of Dr. Jekyll & Mr. Hyde"
 SET normstring=cfg.Normalize(mystring)
 WRITE normstring
CleanUp
 DO ##class(%iKnow.UserDictionary).%DeleteId(udict.Id)
 DO ##class(%iKnow.Configuration).%DeleteId(cfg.Id)

You can perform NLP text normalization on a string independent of a configuration using the NormalizeWithParams()
method.

These methods perform these operations, in the following order:

1. Apply a UserDictionary, if one is specified

2. Perform NLP language model preprocessing

Using InterSystems Natural Language Processing (NLP) 49

NLP Configurations

3. Convert all text to lowercase letters

4. Replace multiple whitespace characters with a single space

5.3 NLP UserDictionary
A UserDictionary specifies a set of user-defined paired terms applied to the source texts. NLP substitutes each occurrence
of the first term of the pair with the second term as part of source text listing. This operation changes the source text used
by NLP; all subsequent NLP operations see only the substituted term. For example, if UserDictionary replaces the abbrevi-
ation “Dr.” with “Doctor”, every occurrence of “Dr.” is replaced by the word “Doctor” in the data indexed by NLP. The
original source file is not changed, but all representations of the source text within NLP contain this substitution. Unlike
all other components of NLP, UserDictionary changes the source content before listing and loading.

You can use the UserDictionary to substitute one term for another, to expand acronyms and abbreviations (or the reverse),
or to avoid or cause a sentence break.

Substitution pairs are applied before NLP text normalization, which converts the NLP internal text representation to lowercase
letters. For this reason, substitution pairs are case-sensitive. Thus, to replace all instances of “physician” with “doctor” you
will need the substitution pairs "physician","doctor", "Physician","Doctor", and perhaps
"PHYSICIAN","DOCTOR".

A UserDictionary is also used for user-defined attribute terms, such terms that indicate a positive sentiment or a negative
sentiment attribute.

Defining a UserDictionary is optional. A UserDictionary exists independent of any specific configuration or domain. A
defined UserDictionary can be assigned as a Configuration property. Only one UserDictionary can be assigned to a Config-
uration. The same UserDictionary can be assigned to multiple Configurations.

A defined UserDictionary can also be specified to the NormalizeWithParams() method, independent of any Configuration.

Note: You cannot modify an existing configuration; a %New() does not delete/replace an existing configuration.
Therefore, to add a UserDictionary to an existing configuration you must explicitly delete then re-create the named
configuration. Alternatively, you can create a new configuration with a new configuration name.

The UserDictionary is applied to sources when the sources are listed; already indexed sources are not affected by
changes to UserDictionary.

5.3.1 UserDictionary Format

UserDictionary pairs often perform the simple substitution of a term for an equivalent term. For example, replacing every
occurrence of “physician” with “doctor”. Using the backslash character provides additional formatting options:

MeaningFormat

Only perform substitution if a blank space occurs here.\

Do not issue a sentence break.\noend

Issue a sentence break.\end

These are shown in the following sample UserDictionary pairs:

\UK,United Kingdom
\+\,plus
Fr.,\noend
\STOP,\end

50 Using InterSystems Natural Language Processing (NLP)

Alternatives for Creating an NLP Environment

5.3.2 Defining a UserDictionary in Domain Architect

You can define a UserDictionary as part of Domain Settings when creating a domain using the interactive Domain Architect
tool.

5.3.3 Defining a UserDictionary as an Object Instance

You must first create a UserDictionary object, then populate that instance.

 SET udict=##class(%iKnow.UserDictionary).%New("MyUserDict")
 DO udict.%Save()
 DO udict.AddEntry("Dr.","Doctor")
 DO udict.AddEntry("physician","doctor")
 DO udict.AddEntry("Physician","Doctor")

To populate a UserDictionary object, you use the AddEntry() method to specify substitution pairs. Each substitution pair
requires a separate AddEntry() with the following format: AddEntry(oldstring,newstring). Note that substitution is string
substitution, and that pairs are case-sensitive. You can, optionally, specify the position at which to add the UserDictionary
entry (the position default is to add the entry at the end of the UserDictionary). Because NLP applies substitution pairs in
UserDictionary order, you can use position to perform additive substitutions. For example, first replace “PA” with “physician’s
assistant”, then replace “physician” with “doctor”.

To add user-defined attribute terms, such as Sentiment attributes, you use the appropriate instance method, as shown in the
following example:

 SET udict=##class(%iKnow.UserDictionary).%New("SentimentUserDict")
 DO udict.%Save()
 DO udict.AddNegativeSentimentTerm("bad")
 DO udict.AddNegativeSentimentTerm("horrible")
 DO udict.AddPositiveSentimentTerm("good")
 DO udict.AddPositiveSentimentTerm("excellent")

The same UserDictionary can contain both substitution pairs and attribute terms.

To assign a UserDictionary object, you supply the UserDictionary name as the 4th argument in the Configuration %New()
method:

 SET cfg=##class(%iKnow.Configuration).%New("MyConfig",0,$LISTBUILD("en"),"MyUserDict",1)
 DO cfg.%Save()

5.3.4 Defining a UserDictionary as a File

You must first create a UserDictionary file, populate it, then assign this UserDictionary file to a Configuration.

A UserDictionary file must be a text file in UTF-8 format encoding.

To populate a UserDictionary file, you specify substitution pairs in a text file. Each substitution pair is a separate line with
the following format: oldstring,newstring. Note that substitution is string substitution, and that pairs are case-sensitive. The
following is a sample UserDictionary file:

Mr.,Mister
Dr.,Doctor
Fr.,Fr
\UK,United Kingdom

To assign a UserDictionary file, you supply the full pathname as the 4th argument in the Configuration %New() method:

 SET cfg=##class(%iKnow.Configuration).%New(myconfig,0,$LISTBUILD("en"),"C:\temp\udict.txt",1)
 DO cfg.%Save()

Using InterSystems Natural Language Processing (NLP) 51

NLP UserDictionary

6
Loading Text Data Programmatically

Before NLP can analyze text data, the data sources must be loaded into a domain. This can be done in three ways:

• Using the Domain Architect to specify the data locations source texts for a domain. The Build button loads the specified
sources into the domain.

• Creating an subclass allows you to specify the data locations for source texts for a domain. It generates a %Build()
method in a dependent class that contains the logic to load this data.

• Specifying a Loader and Lister programmatically to load the specified sources into a domain, as described in this
chapter.

To make text data available for NLP analysis, the domain must invoke an instance of a Loader and a Lister. The Loader
supervises NLP processing of text sources, using the Lister and a Processor. The Lister identifies the text sources to be
used by the Loader. NLP provides a variety of Listers for different types of source text data. Each Lister, by default, auto-
matically invokes the corresponding Processor with default parameters. There is one Loader used for data sources of all
types.

Note that the Loader and Lister objects can be created in any order, but both must have been created before you invoke the
Lister AddListToBatch() instance method and then the Loader ProcessBatch() instance method (or other equivalent Lister
and Loader methods).

6.1 Loader
The Loader (%iKnow.Source.Loader) is the main class coordinating the loading process. You must create a new loader
object for the domain. To create a loader object:

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)

After creating a loader and a lister, you issue instance methods to list and process the sources. For example, when performing
a batch load you issue the Lister AddListToBatch() instance method to list the text sources. You then issue the Loader
ProcessBatch() instance method to process the listed sources. This Loader method calls the Lister to scan the locations
marked by AddListToBatch(), then calls the Processor to read those documents and push them to the NLP engine and
finally, it invokes the ^%iKnow.BuildGlobals routine to process the staging globals loaded by the NLP engine.

Using InterSystems Natural Language Processing (NLP) 53

6.1.1 Loader Error Logging

If a load operation completes, but encounters errors in loading one or more sources, these errors are recorded in an error
log. Errors of varying severity can be retrieved using the GetErrors(), GetWarnings(), and GetFailed() methods. For
example, a failed load error (GetFailed()) occurs if you attempt to load a source file that has no contents. A warning load
error (GetWarnings()) occurs if there is an error in the source metadata.

You can use the ClearLogs() method to clear the error log of error messages at any or all of these severity levels.

6.1.2 Loader Reset()

If a load operation didn't complete in an expected fashion and you want to start from scratch, you should invoke the Reset()
method for the loader instance, as follows:

 DO myloader.Reset()

6.2 Lister
The Lister identifies text files, records, or other sources of unstructured data you wish NLP to index. That is, all text that
will eventually end up as a Source in the domain. The unit of content in NLP is a Source, which can represent any unit of
text you wish to analyze, such as a text file, a record in a SQL table, an RSS posting, or other text source.

Usually a Source is a text containing multiple sentences. However, a source can contain content of any type. For example,
a file containing the number 123 is treated as a Source containing one sentence. A file with no contents is not listed as a
Source.

All listers are found in class %iKnow.Source.Lister and have their own specific type of sources they can scan. For example,
the subclass %iKnow.Source.File.Lister scans a file system and the subclass %iKnow.Source.RSS.Lister scans RSS web feeds,
such as blog postings, in XML file format. NLP provides seven listers for different types of sources. You can also create
your own custom lister.

Most text sources require a Lister. However, text that is directly specified as a string does not require a Lister.

Through the AddListToBatch() method you can instruct the Lister to look into a specific directory, SQL table, or RSS
feed for Sources. The lister parameters depend on the actual Lister class.

6.2.1 Initializing a Lister

You can create a Lister instance for a domain using the %New() method for that type of lister, supplying the domain Id.
The following example creates two listers within the specified domain:

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 SET flister=##class(%iKnow.Source.File.Lister).%New(domId)
 WRITE flister,!
 SET rlister=##class(%iKnow.Source.RSS.Lister).%New(domId)
 WRITE rlister

Each lister automatically invokes the corresponding processor, as follows:

• The File.Lister invokes the File.Processor.

• The Global.Lister invokes the Global.Processor.

• The Domain.Lister invokes the Domain.Processor.

54 Using InterSystems Natural Language Processing (NLP)

Loading Text Data Programmatically

• All other Listers invokes the Temp.Processor. The %iKnow.Source.Temp.Processor has that name because it
processes temporary globals that are automatically created and deleted by NLP during the loading process.

Each processor has default processor parameters, which are appropriate for most NLP sources. Therefore, in most cases,
you do not need to specify a processor or processor parameters. If you do not specify a processor, NLP uses the default
processor, as shown by the DefaultProcessor() method.

6.2.2 Overriding Lister Instance Defaults

In most cases, the lister instance defaults are appropriate for the processing of your NLP sources.

If you wish to overriding lister instance defaults for Configuration, Processor, or Converter objects, you can, optionally,
use the Init() instance method to initialize the Lister instance. If you omit Init() the defaults are used.

The complete Lister initialization is as follows:

Init(config,processor,processorparams,converter,converterparams)

To specify the default for any of these items, specify the empty string ("") as the Init() parameter value.

You can also initialize these objects separately using the SetConfig(), SetProcessor(), and SetConverter() methods.

• Configuration (Config): If you do not specify a configuration, NLP uses the default configuration. A configuration
specifies what language(s) the text documents contain, and whether or not automatic language identification should
be used. A configuration object is not domain-specific; you can use the same configuration for multiple domains. While
not required, explicitly specifying a configuration is recommended.

• Processor: Using lister.Init() you can specify a processor and processor parameters. A processor reads the texts into
NLP. Specifying a processor is optional. If you do not specify a processor, NLP uses the default processor and its
parameter defaults. If you specify a processor, you can specify the processor parameter values, as shown in the following
example:

 SET flister=##class(%iKnow.Source.File.Lister).%New(domId)
 SET processor="%iKnow.Source.File.Processor"
 SET pparams=$LB("Latin1")
 DO flister.Init("",processor,pparams,"","")

If explicitly specified, the processor subclass should be either of the same type as the Lister subclass (for example,
%iKnow.Source.File.Lister takes %iKnow.Source.File.Processor) or %iKnow.Source.Temp.Processor if the Lister subclass
has no corresponding Processor subclass. You can also create your own custom processor.

Processor parameters are specified as an InterSystems IRIS list. For %iKnow.Source.File.Processor the first list element
is the name of the character set used (for example "Latin1"). The %iKnow.Source.Temp.Processor does not take any
processor parameters.

• Converter: Using lister.Init() you can specify a user-defined converter and converter parameters. A Converter converts
formatted source documents to plain text, removing HTML or XML tags, PDF formatting, or other non-text contents.
Usually separate converters are used for each source document formatting type. Specifying a converter is optional.
The default is to use no converter. If no converter is used, NLP indexes formatting contents as well as text contents.

6.2.3 Lister Assigns IDs to Sources

The lister assigns two unique IDs to each source:

• Source ID (internal ID): a unique integer assigned by NLP that is used for NLP internal processing.

Using InterSystems Natural Language Processing (NLP) 55

Lister

• External ID: a unique identifying string or number. The External ID is used as the link for any user-specified application
that wishes to use NLP. The External ID has the following structure:

ListerReference:FullReference

The Lister Reference is either the full class name of the Lister class used to load this source, or a short alias defined
by the Lister class itself, prefixed with a colon. The Full Reference is a string for which the format is defined by the
Lister class. It contains a Group Name and a Local Reference. It is up to the Lister to provide the implementation to
derive the Group Name and Local Reference from this Full Reference, and to rebuild the Full Reference from the
Group Name and Local Reference.

For example, the text file external ID :FILE:c:\mytextfiles\mydoc.txt consists of:

– ListerReference: the Lister class alias :FILE

– FullReference: c:\mytextfiles\mydoc.txt, which consists of the Group Name c:\mytextfiles\ and
the Local Reference mydoc.txt.

For data in an SQL table, the ListerReference is :SQL. The Group Name is the groupfield, a field in the record that
contains a unique value, and the Local Reference is the row ID.

For data in a string or global variable, the ListerReference is :TEMP.

The external ID format described here is the default; external ID format is configurable using the SimpleExtIds domain
parameter.

You can access a source using either ID. The %iKnow.Queries.SourceAPI class contains methods for accessing these IDs.
The GetByDomain() method returns both IDs for each source. Given the source ID, the GetExternalId() method returns
the external ID. Given the external ID, the GetSourceId() method returns the source ID.

You can determine the lister class alias using the GetAlias() method of the %iKnow.Source.File.Lister class. If no alias
exists, the External ID contains the full Lister class name.

6.2.4 Lister Defaults Example

The following is a minimal Lister and Loader example, taking all defaults. It establishes a domain, then creates Lister and
Loader instance objects for that domain. It does not invoke lister.Init(), but takes the defaults for configuration, processor,
and converter. It then lists and loads a directory of user-defined .txt and .log files:

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
SetListerAndLoader
 SET mylister=##class(%iKnow.Source.File.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
UseListerAndLoader
 SET install=$SYSTEM.Util.DataDirectory()
 SET dirpath=install_"mgr\Temp\iris\mytextfiles"
 SET stat=mylister.AddListToBatch(dirpath,$LB("txt","log"),0,"")
 WRITE "The lister status is ",$System.Status.DisplayError(stat),!
 SET stat=myloader.ProcessBatch()
 WRITE "The loader status is ",$System.Status.DisplayError(stat),!

Most examples in this book delete old data before using the Lister and Loader; this old data deletion is for demonstration
purposes to allow these examples to be run repeatedly. Most examples in this book do not specify the processor and processor
parameters, taking the defaults. Many examples in this book specify values for configuration rather than taking the defaults.

6.2.5 Lister Parameters

When you invoke a method to specify sources, you specify Lister parameters. You specify the same Lister parameters for
the AddListToBatch() Lister instance method (for large batch loads of sources) and the ProcessList() Loader instance
method (for adding a small number of sources to an existing batch of sources).

56 Using InterSystems Natural Language Processing (NLP)

Loading Text Data Programmatically

There are four Lister parameters that cumulatively define which sources are to be listed for NLP indexing:

• Path: the location where the sources are located, specified as a string. This parameter is mandatory.

• Extensions: one or more file extension suffixes that identify which sources are to be listed. Specified as an InterSystems
IRIS list data structure, each element of which is a string (refer to $LISTBUILD for details on InterSystems IRIS list
data structures). By default the Lister selects all files in the Path directory that contain data, regardless of their file
extension suffix. This includes files with no file extension suffix or with a file extension suffix indicating a non-text
(such as .jpg). Empty files are not selected. Directories are not selected. When an extension suffix parameter is specified,
the Lister selects only those files in the Path directory with that file extension suffix (or with no file extension suffix)
that contain data.

• Recursive: a boolean value that specifies whether to search subdirectories of the path for sources. If selected, multiple
levels of subdirectories are searched for sources. 1 = include subdirectories. 0 = do not include subdirectories. The
default is 0.

• Filter: a string specifying a filter used to limit which sources are to be listed for NLP indexing. For example, a user-
designed filter could limit the Lister to only those files that have a specified substring in their file names. The default
is to use no filter. (Note that this use of the word “filter” is completely separate from the filters in the %iKnow.Filters

class that are used to include or exclude already-indexed sources supplied to an NLP query.)

6.2.6 Batch or List?

NLP provides two ways to load sources of all types, batch loading (ProcessBatch()) or list loading (ProcessList()). Both
perform the same processing, they differ in their speed of execution. Which one you use depends primarily on how many
sources you are loading. As a general rule, when loading ten or fewer sources, use ProcessList(); when loading one hundred
or more sources, use ProcessBatch(). Which to use on intermediate numbers of sources depends on the nature of the specific
sources.

6.3 Listing and Loading Examples
The examples in this section show the different ways to load sources:

• lister.AddListToBatch() and loader.ProcessBatch() to batch load a large number of sources.

• loader.SetLister() and loader.ProcessList() to load a small number of sources, or to add sources to an existing batch
load.

• loader.BufferSource() and loader.ProcessBuffer() to load a string as a source. You can, of course, specify a local or
global variable that contains the string.

You can also load sources as virtual sources using loader.ProcessVirtualList() or loader.ProcessVirtualBuffer(), as
described in Loading a Virtual Source.

6.3.1 Loading Files

The following executable example performs a batch load of the source files in the Windows directory dirpath that have the
extensions .txt or .log.

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { SET domoref=##class(%iKnow.Domain).%New(dname)

Using InterSystems Natural Language Processing (NLP) 57

Listing and Loading Examples

 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
CreateListerAndLoader
 SET flister=##class(%iKnow.Source.File.Lister).%New(domId)
 DO flister.Init("myconfig","","","","")
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
UseListerAndLoader
 SET install=$SYSTEM.Util.DataDirectory()
 SET dirpath=install_"mgr\Temp\iris\mytextfiles"
 SET stat=flister.AddListToBatch(dirpath,$LB("txt","log"),0,"")
 WRITE "The lister status is ",$System.Status.DisplayError(stat),!
 SET stat=myloader.ProcessBatch()
 WRITE "The loader status is ",$System.Status.DisplayError(stat),!
QueryLoadedSources
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," sources"

This example performs a batch load, appropriate for loading a large number of files. To load a small number of files use
the SetLister() and ProcessList() methods.

6.3.2 Loading SQL Records

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following executable example performs a batch load of the records of the Cinema.Review table. It loads as a source
text the ReviewText field value for each record. You can specify a source text field of data type %String or
%Stream.GlobalCharacter (character stream data). If there is an error in the SQL query, the Loader returns an error status.

NLP programs that load SQL data must use the %iKnow.Source.SQL.Lister. This lister always invokes the
%iKnow.Source.Temp.Processor, which takes no parameters. There is, therefore, no reason to specify the processor,
unless you have created your own custom processor.

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
CreateListerAndLoader
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 DO flister.Init("myconfig")
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull,EventDate FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)

58 Using InterSystems Natural Language Processing (NLP)

Loading Text Data Programmatically

 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
QueryLoadedSources
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," sources loaded"

This example performs a batch load, appropriate for loading a large number of SQL records. To load a small number of
SQL records use the SetLister() and ProcessList() methods.

You can also use the %SYSTEM.iKnow utility method IndexTable().

6.3.3 Loading Elements of a Subscripted Global

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following executable example loads the elements of a subscripted global. It uses the %iKnow.Source.Global.Lister
and specifies the following Lister parameters to the ProcessList() method: global name, first subscript (inclusive), and last
subscript (inclusive). This example uses the ^Aviation.AircraftD global. Because this is a sparse array, only a few of the
subscripts between 1 and 50,000 contain data:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET mylister=##class(%iKnow.Source.Global.Lister).%New(domId)
 DO mylister.Init("myconfig","","","","")
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET stat=myloader.SetLister(mylister)
 IF stat '= 1 { WRITE "SetLister error ",$System.Status.DisplayError(stat)
 QUIT}
 SET gbl="^Aviation.AircraftD"
 SET stat=myloader.ProcessList(gbl,1,50000)
 IF stat '= 1 { WRITE "ProcessList error ",$System.Status.DisplayError(stat)
 QUIT }
SourceSentenceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
 SET numSentD=##class(%iKnow.Queries.SentenceAPI).GetCountByDomain(domId)
 WRITE "These sources contain ",numSentD," sentences"

The ProcessList() method can specify only one subscript level at a time. In order to iterate through multiple subscript levels,
you must write code to invoke this method at the desired subscript level. For example, to load the second level subscripts
1 and 2, you would write code such as the following:

 FOR i=1:1:90000 {
 SET gbl="^Aviation.NarrativeS("_i_")"
 SET stat=myloader.ProcessList(gbl,1,2) }

This loads globals such as ^Aviation.NarrativeS(85879,1) and ^Aviation.NarrativeS(85879,2).

Using InterSystems Natural Language Processing (NLP) 59

Listing and Loading Examples

6.3.4 Loading a String

The following executable example loads a single global (or a string literal) as a source file. Note that no Lister is required
when loading a string. You can specify the Configuration to apply in the ProcessBuffer() method.

ConfigurationCreateOrOpen
 IF ##class(%iKnow.Configuration).Exists("EnFr") {
 SET cfg=##class(%iKnow.Configuration).Open("EnFr") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("EnFr",1,$LB("en","fr"))
 DO cfg.%Save() }
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 SET domId=domoref.Id
 WRITE "Created the ",dname," domain with domain ID ",domId,!
 GOTO CreateLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 SET domId=domoref.Id
 GOTO CreateLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
CreateLoader
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
UseLoader
 SET ^a="I drove at 70mph then sped up to 100mph when the light changed."
 DO myloader.BufferSource("ref",^a)
 DO myloader.ProcessBuffer("EnFr")
QuerySources
 WRITE "number of sources:",##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)

The first argument of the BufferSource() method specifies a unique external source Id. The following example creates a
separate source for each global subscript:

 SET i=1
 WHILE $DATA(^a(i)) {
 DO myloader.BufferSource("ref"_i,^a(i))
 DO myloader.ProcessBuffer()
 SET i=i+1 }
 WRITE "end of data"

You can also use the %SYSTEM.iKnow utility method IndexString().

6.4 Updating the Domain Contents
After you have performed an initial load of sources to a domain, you can change this list of sources by adding sources or
by deleting sources. Updating a domain refers to responding to changes in the set of source texts. This should not be confused
with upgrading a domain, which refers to responding to changes in the NLP software, commonly after installing a significant
new version of InterSystems IRIS.

6.4.1 Adding Sources

After you have performed an initial load of sources to a domain (using the AddListToBatch() and ProcessBatch() methods)
you may want to add more files to the list of sources. This is done using the SetLister() and ProcessList() methods. The
ProcessList() method takes the same parameters as the AddListToBatch() method.

• To add a one source at a time: SET stat=myloader.ProcessList("C:\mytextfiles\newfile.txt")

60 Using InterSystems Natural Language Processing (NLP)

Loading Text Data Programmatically

• To add a directory of sources: SET
stat=myloader.ProcessList("C:\mytextfiles\logfiles",$LB("log"),0,"")

Adding more sources to a batch load is shown in the following example:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET flister=##class(%iKnow.Source.File.Lister).%New(domId)
 DO flister.Init("myconfig","","","","")
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET stat=myloader.SetLister(flister)
SourceBatchLoad
 SET install=$SYSTEM.Util.DataDirectory()
 SET dirpath=install_"mgr\Temp\iris\mytextfiles"
 SET stat=flister.AddListToBatch(dirpath,$LB("txt"),0,"")
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 { WRITE "Loader error ",$System.Status.DisplayError(stat)
 QUIT }
QueryLoadedSources
 WRITE "Source count is ",##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId),!
ExpandListofSources
 SET elister=##class(%iKnow.Source.File.Lister).%New(domId)
 DO elister.Init("myconfig")
 SET stat=myloader.SetLister(elister)
 SET addpath=install_"dev\IRIS"
 SET stat=myloader.ProcessList(addpath,$LB("txt"),1,"")
 IF stat '= 1 { WRITE "The ProcessList loader status is ",$System.Status.DisplayError(stat)
 QUIT }
QueryTotalSources
 WRITE "Expanded source count is ",##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)

You can also use the %SYSTEM.iKnow utility methods IndexFile() and IndexDirectory().

6.4.2 Deleting Sources

You can remove a source that has been loaded to a domain using the DeleteSource() method. This method cannot be used
to delete a virtual source; a separate DeleteVirtualSource() method is provided for this purpose. Both methods are found
in the %SYSTEM.iKnow class.

6.5 Loading a Virtual Source
A virtual source is a source that is not static. You might, for example, use a virtual source for a file that is being frequently
modified. The srcId of a virtual source is a negative integer. The external Id of a virtual source begins with the ListerReference
(the Lister class alias), commonly :TEMP.

Adding a virtual source does not update NLP statistics. For this reason, using a virtual source may be desirable when you
wish to temporarily add sources for a specific purpose without incurring the overhead of revising the domain statistics.
You should use a virtual source when adding a source that is being continuously modified, such a source in the process of

Using InterSystems Natural Language Processing (NLP) 61

Loading a Virtual Source

being written. Because the virtual source Id is a negative number, it is easy to distinguish virtual sources from regular
sources. Different methods are used to delete virtual sources and regular sources.

You can load virtual sources using loader.SetLister() and loader.ProcessVirtualList() or loader.BufferSource() and
loader.ProcessVirtualBuffer(). The following program loads a virtual source using ProcessVirtualBuffer().

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 SET domId=domoref.Id
 WRITE "Created the ",dname," domain with domain ID ",domId,!
 GOTO SetEnvironment }
DeleteOldData /* This DOES NOT delete virtual sources */
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 SET domId=domoref.Id
 GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET config="VSConfig"
 IF ##class(%iKnow.Configuration).Exists(config) {
 SET cfg=##class(%iKnow.Configuration).Open(config) }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New(config,1)
 DO cfg.%Save() }
CreateLoader
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
VirtualSource
 SET node="",(total,status)=0
 FOR { SET node=$ORDER(^VendorData(node),1,data) QUIT:node=""
 SET company=$LIST(data,1) QUIT:company=""
 SET address=$LTS($LIST(data,2))
 SET total=total+1
 SET status=myloader.BufferSource("SourceTest"_total,company)
 SET status=myloader.BufferSource("SourceTest"_total,address)
 }
 SET status=myloader.ProcessVirtualBuffer(config)

 SET vsrclist=myloader.GetSourceIds()
 FOR i=1:1:$LL(vsrclist) {
 SET srcid=-$LIST(vsrclist,i)
 WRITE "External Id=",##class(%iKnow.Queries.SourceAPI).GetExternalId(domId,srcid)
 WRITE " Source Id=",srcid,!
 WRITE " Sentence Count=",##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,$lb(srcid)),!

 }

Note that the %iKnow.Queries.SourceAPI.GetCountByDomain() method does not count virtual sources. You can
determine if a virtual source has been loaded by invoking %iKnow.Queries.SourceAPI.GetExternalId(domId,-1). Here
-1 is the srcId of the first virtual source loaded.

By default, many NLP queries process only ordinary sources and ignore virtual sources. To use these queries to process a
virtual souce you must specify a vSrcId parameter value for the query method.

6.5.1 Deleting a Virtual Source

The %iKnow.Source.Loader class provides two methods for deleting virtual sources.

• DeleteVirtualSource() deletes a single virtual source indexed for a domain. You specify the domain Id (a positive
integer) and the virtual source Id (a negative integer). This deletes all NLP entities generated for this source text.

• DeleteAllVirtualSources() deletes all of the virtual sources indexed for a specified domain. This deletes all NLP
entities generated for these source texts.

62 Using InterSystems Natural Language Processing (NLP)

Loading Text Data Programmatically

6.6 Copying and Re-indexing Loaded Source Data
After you have successfully loaded sources into a domain, you may wish to copy some or all of these sources to another
domain. When NLP copies these loaded sources it also re-indexes them. The copied sources therefore have different source
Ids and entity Ids; the external Ids are not changed.

Some reasons you might want to copy/re-index from one domain to another:

• To create a copy of a domain. You may wish to make a backup copy, or to create a copy to serve as a snapshot of the
domain at a particular time. For example, when indexing RSS feeds you may wish to create a snapshot because these
feeds change over time; at a future date you might no longer have access to the original source data.

• To create a domain containing a subset of the original set of sources. The new domain can be smaller, more efficient,
and easier to work with. You can specify this copied subset of sources by a list of source Ids to copy, or by a filter that
limits which sources to copy. For example, you could create a domain consisting of only the newest sources, which
you could then query without having to filter by date for each query.

• To create a domain containing the merged sets of sources from two domains, or to add sources from one domain into
a domain that already contains sources.

• To re-index the sources in a domain after extreme modification of the set of sources. For example, if you very frequently
add or delete multiple sources in a domain, the indexing may no longer be optimal. (Normal adding and deleting of
sources does not degrade index performance.) By copying the domain, you re-index the current sources that you are
copying, making the indexing in the new domain optimal.

• To apply NLP language model revisions. Release versions of NLP commonly contain improvements to its language
models. These may include introduction of support for new languages and improvements to already-supported languages.
Copying the set of sources in a domain re-indexes these sources, and therefore applies the most current NLP language
models to the copied sources.

You use the %iKnow.Source.Domain.Lister class to copy/re-index from one domain to another. The new domain must already
be defined before you can create a Lister instance for this class using the %New() method. Both domains must be in the
same namespace.

The following example populates the firstdomain domain, then copies the contents of firstdomain to an empty domain
named newdomain, automatically re-indexing the newdomain contents:

EstablishAndPopulateFirstDomain
 SET domOref=##class(%iKnow.Domain).%New("firstdomain")
 DO domOref.%Save()
 SET domId=domOref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull,EventDate FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
TestQueryFirstDomain
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," sources in the from domain",!
CreateSecondDomain
 SET domOref=##class(%iKnow.Domain).%New("newdomain")
 DO domOref.%Save()
 SET domNewId=domOref.Id
CopyAndReindexFromFirstDomainToSecondDomain
 SET newlister=##class(%iKnow.Source.Domain.Lister).%New(domNewId)
 SET newloader=##class(%iKnow.Source.Loader).%New(domNewId)
 SET stat=newlister.AddListToBatch(domId)
 SET stat=newloader.ProcessBatch()
TestQuerySecondDomain
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domNewId)," sources in the to domain"
CleanUpForNextTime
 SET stat=##class(%iKnow.Domain).%DeleteId(domId)

Using InterSystems Natural Language Processing (NLP) 63

Copying and Re-indexing Loaded Source Data

 IF stat '= 1 {WRITE "Domain delete error:",stat }
 SET stat=##class(%iKnow.Domain).%DeleteId(domNewId)
 IF stat '= 1 {WRITE "Domain delete error:",stat }

The AddListToBatch() method can take a second lister parameter to specify which sources are to be copied. It can either
specify a list of sources (a comma-separated list of source Id integers) or specify a filter. The following example is identical
to the previous example, except that it limits which sources are to be copied by specifying a comma-separated list of source
Ids.

EstablishAndPopulateFirstDomain
 SET domOref=##class(%iKnow.Domain).%New("firstdomain")
 DO domOref.%Save()
 SET domId=domOref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull,EventDate FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
TestQueryFirstDomain
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," sources in the from domain",!
CreateSecondDomain
 SET domOref=##class(%iKnow.Domain).%New("newdomain")
 DO domOref.%Save()
 SET domNewId=domOref.Id
SubsetOfSourcesToCopy
 SET subset="1,3,5,7,9,11,13,15,17,19"
CopyAndReindexFromFirstDomainToSecondDomain
 SET newlister=##class(%iKnow.Source.Domain.Lister).%New(domNewId)
 SET newloader=##class(%iKnow.Source.Loader).%New(domNewId)
 SET stat=newlister.AddListToBatch(domId,subset)
 SET stat=newloader.ProcessBatch()
TestQuerySecondDomain
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domNewId)," sources in the to domain"
CleanUpForNextTime
 SET stat=##class(%iKnow.Domain).%DeleteId(domId)
 IF stat '= 1 {WRITE "Domain delete error:",stat }
 SET stat=##class(%iKnow.Domain).%DeleteId(domNewId)
 IF stat '= 1 {WRITE "Domain delete error:",stat }

6.6.1 UserDictionary and Copied Sources

A UserDictionary is applied when a source is listed. Therefore, any UserDictionary modifications made to the initial loaded
sources will appear in the copied sources. However, because the copy operation is also a list operation, you can also apply
a new UserDictionary to modify the sources as they are copied.

For example, the UserDictionary used when the sources were originally listed substitutes “Doctor” for the abbreviation
“Dr.”; this substitution will be present in the copied sources. Later you modified the UserDictionary to also substitute
“doctor” for “physician”. This change to your UserDictionary had no effect on the already-loaded sources. When you copy
the sources, you apply this revised UserDictionary. The “Dr.” to “Doctor” substitution is performed 0 times, because that
substitution is already present in the initial loaded sources; the “physician” to “doctor” substitution is performed on the
copied sources.

64 Using InterSystems Natural Language Processing (NLP)

Loading Text Data Programmatically

7
Performance Considerations when
Loading Texts

Because NLP typically handles large amounts of text data, the following InterSystems IRIS Data Platform™ performance
considerations should be heeded when loading source text:

• Before starting a batch load of a significant number of sources, stop database journaling. Once the batch load completes,
make sure to restart journaling. Refer to the “Journaling” chapter of the Data Integrity Guide for information on
stopping and restarting journaling.

• Before starting a batch load of a significant number of sources (or a small number of very large sources), set the global
buffer pool to a size large enough to handle this operation. NLP indexing creates a large number of temporary globals.
If the global buffer pool is not large enough to handle these temporary globals in memory, they are written to disk.
These disk I/O operations can significantly affect NLP performance. Refer to “Memory and Startup Settings” in the
“Configuring InterSystems IRIS” chapter of the System Administration Guide.

• NLP indexing requires substantially more disk space than the space occupied by the source texts. The approximate
space requirements for temporary and permanent globals are described in “Globals and Space Requirements” section
of the “Implementation” chapter of this manual.

• Do not configure more language support than is required for your sources. Your NLP Configuration should specify
only those languages that are actually found in your sources. If all of your sources are in one language, do not specify
automatic language identification. Unless n-grams are required for the language, do not set the EnableNgrams domain
parameter.

Using InterSystems Natural Language Processing (NLP) 65

8
NLP Queries

The NLP semantic analysis engine supplies a large number of InterSystems IRIS Data Platform™ query APIs which are
used to return text entities and statistics about these text entities. For example, the %iKnow.Queries.CrcAPI.GetTop()
method returns the most frequently occurring CRCs in a specified domain. The
%iKnow.Queries.CrcAPI.GetCountBySource() returns the total number of unique CRCs that appear in the specified
sources.

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

8.1 Types of Queries
There are three types of queries provided. They are distinguished by their name suffixes:

• API: ObjectScript queries

• QAPI: InterSystems SQL queries

• WSAPI: SOAP-accessible Web Services queries

For each of these types, NLP provides queries for:

• Entities: return all entities in a source or multiple sources; the most frequently occurring entities; entities similar to a
supplied string, etc.

• CCs: return concept-concept pairs.

• CRCs: return concept-relation-concept (master-relation-slave) sequences.

• Paths: return chain of concept-relation-concept sequences within a sentence. A path contains a minimum of two CRCs
(CRCRC).

• Sentences: return sentences that contain a specified CRC, entity, etc.

• Sources: return sources that contain a specified CRC, entity, etc.

8.2 Queries Described in this Chapter
This chapter describes and provides examples of many commonly-used NLP queries:

Using InterSystems Natural Language Processing (NLP) 67

• Counting sources in a domain

• Counting sentences in a source

• Counting sources that contain a specified entity

• Listing “top” (most prominent) entities in a domain

• Listing CRCs that contain a specified entity (domain-wide)

• Counting sources that contain a specified CRC

• List sentences that fulfill a CRC mask (match entity value and position)

• Listing entities that are similar to a specified string (domain-wide)

• Listing entities that are related to a specified entity (domain-wide)

• Counting paths in a source

• Listing sources that are similar to a specified source (domain-wide)

• Summarizing a source (listing summary sentences)

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

Note that the query examples in this chapter use the default Configuration. Queries that you write may require a specified
Configuration to establish the language environment.

8.3 Query Method Parameters
The following parameters are common to many query methods:

• domainid: The domain ID is an integer that identifies the domain.

• result: If a query returns an array of values rather than just a single result value, the result set is passed by reference
(using the dot prefix operator, for example, .result). You can then use ZWRITE to display the whole result set in
raw InterSystems IRIS list format, or use a loop structure and list-to-string conversion to return one row at a time, as
shown in the examples in this chapter.

• page and pagesize (optional): To prevent methods from retrieving and returning thousands of records, the Query API
uses a paging mechanism to allow the user to limit the number of results returned. It divides the results into equal-
length pages, with the length of each page specified as the pagesize. For example, if you want the first ten results, you
specify page 1 and a pagesize of 10. If you want the next page of results, you specify page 2 and pagesize 10. The
default values are page=1 and pagesize=10.

• setop (optional): If a query applies more than one selection criteria, the Setop logical operator specifies whether the
query should return the union or the intersection of the result sets. 1 ($$$UNION) returns results that match any of the
supplied selection criteria. 2 ($$$INTERSECT) returns results that match all of the supplied selection criteria. The
default is $$$UNION.

• entitylist: In queries that return matches to an entity (for example, GetByEntities(), GetRelated(), GetSimilar()) an
InterSystems IRIS list of entities. You can specify entitylist entities in any mix of uppercase and lowercase letters;
NLP matches them against indexed entities normalized to lowercase.

• vSrcId: The source Id of a virtual source, specified as a negative integer. If specified, only entities in that virtual source
are processed by the query. If omitted or specified as 0, only ordinary sources are considered by the query and virtual
sources are ignored. The default is 0.

68 Using InterSystems Natural Language Processing (NLP)

NLP Queries

8.4 Counting Sources and Sentences
To count the number of sources loaded, you can use the GetCountByDomain() method of the %iKnow.Queries.SourceAPI

class.

To count the sentences in all of the sources loaded, you can use the GetCountByDomain() method of the
%iKnow.Queries.SentenceAPI class. To count the sentences in a single source, you can use the GetCountBySource()
method.

The following example uses data loaded from .txt files to demonstrate these sentence count methods. The default Configu-
ration is used:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET mylister=##class(%iKnow.Source.File.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET stat=myloader.SetLister(mylister)
 SET install=$SYSTEM.Util.DataDirectory()
 SET dirpath=install_"mgr\Temp\iknow\mytextfiles"
 SET stat=myloader.ProcessList(dirpath,$LB("txt"),0,"")
 IF stat '= 1 { WRITE "Loader error ",$System.Status.DisplayError(stat)
 QUIT }
SourceSentenceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
 SET numSentD=##class(%iKnow.Queries.SentenceAPI).GetCountByDomain(domId)
 WRITE "These sources contain ",numSentD," sentences",!!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,20)
 SET i=1
 WHILE $DATA(result(i)) {
 SET extId = $LISTGET(result(i),2)
 SET fullref = $PIECE(extId,":",3,4)
 SET fname = $PIECE(fullref,"\",$LENGTH(extId,"\"))
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 WRITE fname," has ",numSentS," sentences",!
 SET i=i+1 }

The following example uses data loaded from a field of the Aviation.Event SQL table to demonstrate these sentence count
methods. In this example only a sample of 10 data records (TOP 10) are loaded:

 DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)

Using InterSystems Natural Language Processing (NLP) 69

Counting Sources and Sentences

 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 10 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceSentenceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
 SET numSentD=##class(%iKnow.Queries.SentenceQAPI).GetCountByDomain(domId)
 WRITE "These sources contain ",numSentD," sentences",!!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,20)
 SET i=1
 WHILE $DATA(result(i)) {
 SET extId = $LISTGET(result(i),2)
 SET fullref = $PIECE(extId,":",3,4)
 SET fname = $PIECE(fullref,"\",$LENGTH(extId,"\"))
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 WRITE fname," has ",numSentS," sentences",!
 SET i=i+1 }

For details on what NLP considers a sentence, refer to the Logical Text Units Identified by NLP section of the “Conceptual
Overview” chapter.

8.5 Counting Entities
To count the number of sources that contain one or more occurrences of a specified entity, you can use the
GetCountByEntities() method of the %iKnow.Queries.SourceAPI class. In this method you can specify a list on one or
more entities to search for in the loaded sources.

Note that here, and throughout NLP, the concept of “entity” differs significantly from the familiar notion of a search term.
For example, the entity “dog” does not occur in the sentence “The quick brown fox jumped over the lazy dog.” The entity
“lazy dog” does occur in this sentence. An entity can be a concept or a relation; you could, for example, count the number
of sources that contain the entity “is” or the entity “jumped over”. However, in these examples and in most real-world
cases, NLP matches concepts or concepts associated by a relation.

The following example demonstrates these query count methods:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")

70 Using InterSystems Natural Language Processing (NLP)

NLP Queries

UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
SingleEntityCounts
 SET ent=$LB("NTSB","National Transportation Safety Board",
 "NTSB investigator-in-charge","NTSB oversight","NTSB's Materials Laboratory",
 "FAA","Federal Aviation Administration","FAA inspector")
 SET entcnt=$LISTLENGTH(ent)
 SET ptr=0
 FOR x=1:1:entcnt {
 SET stat=$LISTNEXT(ent,ptr,val)
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByEntities(domId,val)," contain ",val,!
 }
 WRITE "end of listing"

8.6 Listing Top Entities
NLP has three query methods you can use to return the “top” entities in the source documents of a domain:

• GetTop() list the most-frequently-occurring entities in descending order by frequency count (by default). It can also
be used to list most-frequently-occurring entities by spread. It provides the frequency and spread for each entity. This
is the most basic listing of top entities.

• GetTopTFIDF() lists the top entities using a frequency-based metric similar to the TFIDF score. It calculates this
score by combining an entity’s Term Frequency (TF) with its Inverse Document Frequency (IDF). The Term Frequency
counts how often the entity appears in a single source. The Inverse Document Frequency is based on the inverse of the
spread (also known as “document frequency”) of an entity. It uses this IDF frequency to diminish the Term Frequency.
Thus an entity that appears multiple times in a small percentage of the sources is given a high TFIDF score; an entity
that appears multiple times in a large percentage of the sources is given a low TFIDF score.

• GetTopBM25() lists the top entities using a frequency-based metric similar to the Okapi BM25 algorithm, which
combines an entity's Term Frequency with its Inverse Document Frequency (IDF), taking into account document
length.

All three of these methods return top Concepts by default, but can be used to return top Relations. All three of these methods
can apply a filter to limit the scope of sources used.

The GetTop() method ignores entities of less than three characters. The GetTopTFIDF() and GetTopBM25() methods
can return 1-character and 2-character entities.

8.6.1 GetTop(): Most-Frequently-Occurring Entities

An NLP query can return the most frequently occurring entities in the source documents in descending order of frequency
or spread. Each entity is returned as a separate record in InterSystems IRIS list format.

The entity record format is as follows:

• The entity ID, a unique integer assigned by NLP.

• The entity value, specified as a string.

• Frequency: an integer count of how many times the entity occurs in the source documents.

• Spread: an integer count of how many source documents contain the entity.

Using InterSystems Natural Language Processing (NLP) 71

Listing Top Entities

The following query returns the most frequent (top) entities in the sources loaded by this program. By default these are
Concept entities. It sets the page (1) and pagesize (50) parameters to specify how many entities to return. It returns (at most)
the top 50 entities. It uses the domain default sorttype, which is in descending order by frequency:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
TopEntitiesQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetTop(.result,domId,1,50)
 SET i=1
 WHILE $DATA(result(i)) {
 SET outstr = $LISTTOSTRING(result(i),",",1)
 SET entity = $PIECE(outstr,",",2)
 SET freq = $PIECE(outstr,",",3)
 SET spread = $PIECE(outstr,",",4)
 WRITE "[",entity,"] appears ",freq," times in ",spread," sources",!
 SET i=i+1 }
 WRITE "Printed the top ",i-1," entities"

The following GetTop() method returns the top entities by spread:

 DO ##class(%iKnow.Queries.EntityAPI).GetTop(.result,domId,1,50,,,$$$SORTBYSPREAD)

8.6.2 GetTopTFIDF() and GetTopBM25()

These two methods return a list of top entities in descending order by a calculated score. By default these are Concept
entities. Because they are using different algorithms to assign a score to an entity, the list of “top” entities may differ sig-
nificantly. For example, the following table shows the relative order of four entities in the Aviation.Event database when
analyzed using different methods:

“student pilot”“flight instructor”“helicopter”“airplane”

43rd17th12th1stGetTop()

22nd4th1st(not in listing)GetTopTFIDF()

1st2nd3rd(not in listing)GetTopBM25()

72 Using InterSystems Natural Language Processing (NLP)

NLP Queries

The top 5 entities in the Aviation.Event database returned by GetTop() are: “airplane”, “pilot”, “engine”, “flight”, and
“accident”. All of these entities occur at least once in more than half of the sources. While these are frequently-occurring
entities, they are of little value in determining the contents of specific sources. An entity that occurs in more than half of
the sources is given a negative IDF value. For this reason, none of these entities appear in the GetTopTFIDF() and
GetTopBM25() listings.

The following example list the top 50 entities using GetTopTFIDF():

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
TopEntitiesQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetTopTFIDF(.result,domId,1,50)
 SET i=1
 WHILE $DATA(result(i)) {
 SET outstr = $LISTTOSTRING(result(i),",",1)
 SET entity = $PIECE(outstr,",",2)
 SET score = $PIECE(outstr,",",3)
 WRITE "[",entity,"] has a TFIDF score of ",score,!
 SET i=i+1 }
 WRITE "Printed the top ",i-1," entities"

The following example list the top 50 entities using GetTopBM25():

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)

Using InterSystems Natural Language Processing (NLP) 73

Listing Top Entities

 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
TopEntitiesQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetTopBM25(.result,domId,1,50)
 SET i=1
 WHILE $DATA(result(i)) {
 SET outstr = $LISTTOSTRING(result(i),",",1)
 SET entity = $PIECE(outstr,",",2)
 SET score = $PIECE(outstr,",",3)
 WRITE "[",entity,"] has a BM25 score of ",score,!
 SET i=i+1 }
 WRITE "Printed the top ",i-1," entities"

8.7 CRC Queries
An NLP query that returns a CRC (Concept-Relation-Concept sequence) returns it in the following format:

• The CRC ID, a unique integer assigned by NLP.

• The Master Concept, specified as a string.

• The Relation, specified as a string.

• The Slave Concept, specified as a string.

• Frequency: an integer count of how many times the CRC occurs in the source documents.

• Spread: an integer count of how many source documents contain the CRC.

8.7.1 Listing CRCs that Contain Entities

One common use of CRCs is to specify an entity (usually a Concept) and return the CRCs that contain that entity. This
provides the various contexts in which an entity appears in a source (or sources). Because NLP normalizes all text to low-
ercase letters, you must specify these matching entities in lowercase.

The following query returns all of the CRCs that contain the specified Concepts (“left wing”, "right wing", "wings",
"leading edge", and "trailing edge") as either the master concept or the slave concept of a CRC. Note that the GetByEntities()
method page argument has been set to 25 to return more CRCs; it defaults to 10.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)

74 Using InterSystems Natural Language Processing (NLP)

NLP Queries

 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
CRCQuery
 SET myconcepts=$LB("left wing","right wing","wings","leading edge","trailing edge")
 DO ##class(%iKnow.Queries.CrcAPI).GetByEntities(.result,domId,myconcepts,1,25)
 SET i=1
 WHILE $DATA(result(i)) {
 SET mycrcs=$LISTTOSTRING(result(i),",",1)
 WRITE "[",$PIECE(mycrcs,",",2,4),"]"
 WRITE " appears ",$PIECE(mycrcs,",",5)," times in "
 WRITE $PIECE(mycrcs,",",6)," sources",!
 SET i=i+1 }
 WRITE !,"End of listing"

8.7.2 Counting Sources that Contain a CRC

The following program example returns the count of sources that contain the specified CRCs. To specify CRCs to the
GetCountByCrcs() method, you must specify each CRC as a %List (using $LB), and then group these CRCs together as
a %List. This is shown in the following example:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
CRCCount
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 SET mycrcs=$LB($LB("leading edge","of","wing"),$LB("leading edge","of","right wing"),
 $LB("leading edge","of","left wing"),$LB("leading edges","of","wings"),
 $LB("leading edges","of","both wings"))
 SET numSrc=##class(%iKnow.Queries.SourceAPI).GetCountByCrcs(domId,mycrcs)
 WRITE "From ",numSrcD," indexed sources there are ",!
 WRITE numSrc," sources containing one or more of the following CRCs:",!
 FOR i=1:1:$LISTLENGTH(mycrcs) {
 WRITE $LISTTOSTRING($LIST(mycrcs,i)," "),!
 }

Using InterSystems Natural Language Processing (NLP) 75

CRC Queries

The GetCountByCrcs() method returns the count of sources that contain any of the specified CRCs.

8.7.3 Listing Sources or Sentences that Fulfill a CRC Mask

You can use a CRC mask to specify an entity value for a specific CRC position. Each CRC has three positions: master,
relation, and slave. With a CRC mask you can specify either an entity value or a wildcard for each position. A CRC mask
enables you to list sources or sentences that contain CRCs that match one or more positional values. Because it specifies
both position and entity value, the GetByCrcMask() partial CRC match is a more restrictive match than GetByEntities(),
but a less restrictive match than GetByCrcs().

The following example uses a CRC mask that matches the entity “student pilot” in master position, while using wildcards
to permit any value in the CRC relation and slave positions. The GetByCrcMask() method matches this mask against
every sentence in each source, and returns the sentence Id and the sentence text of those sentences that contain a CRC with
“student pilot” in the master position.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
CRCMaskSentencesBySource
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,100)
 SET i=1
 WHILE $DATA(result(i)) {
 SET srcId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET srcname = $PIECE($PIECE(extId,":",3,4),"\",$LENGTH(extId,"\"))
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 WRITE numSentS," sentences in ",srcname,!
 SET stat=##class(%iKnow.Queries.SentenceAPI).GetByCrcMask(.sentresult,domId,"student pilot",
 $$$WILDCARD,$$$WILDCARD,srcId)
 SET i=i+1
 FOR j=1:1:20 {
 IF $DATA(sentresult(j)) {
 SET sent = $LISTTOSTRING(sentresult(j),",",1)
 SET sentId = $PIECE(sent,",",3)
 WRITE "The SentenceId is ",sentId," in source ",srcname,":",!
 WRITE " ",##class(%iKnow.Queries.SentenceAPI).GetValue(domId,sentId),!
 }
 ELSE { WRITE "Listed ",j-1," sentence that match the CRC mask",!!
 QUIT }
 }
 }

76 Using InterSystems Natural Language Processing (NLP)

NLP Queries

8.8 Listing Similar Entities
You can list the unique entities that are similar to a specified string. An entity is similar if one of the following applies:

• The string is identical to the entity.

• The string is one of the words of the entity.

• The string is the first letters of one of the words of the entity.

Similarity returns each unique entity (Master Concept or Slave Concept) with integer counts of its frequency and spread,
in descending sort order of these integer counts. Similarity does not match Relations. As is true throughout NLP, matching
ignores letter case; all entities are returned in lowercase letters. Similarity does not use stemming logic; “cat” returns both
“cats” and “category”.

The following example lists the entities that are similar to the string “student pilot”:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," total sources",!!
SimilarEntityQuery
 WRITE "Entities similar to 'Student Pilot':",!
 DO ##class(%iKnow.Queries.EntityAPI).GetSimilar(.simresult,domId,"student pilot",1,50)
 SET j=1
 WHILE $DATA(simresult(j)) {
 SET outstr = $LISTTOSTRING(simresult(j),",",1)
 SET entity = $PIECE(outstr,",",2)
 SET freq = $PIECE(outstr,",",3)
 SET spread = $PIECE(outstr,",",4)
 WRITE "(",entity,") appears ",freq," times in ",spread," sources",!
 SET j=j+1 }

The default domain parameter setting governing entity similarity is EnableNgrams, a boolean value.

8.8.1 Parts and N-grams

The GetSimilar() and GetSimilarCounts() methods have a mode parameter that specifies where to search for similarity.
There are two available values:

Using InterSystems Natural Language Processing (NLP) 77

Listing Similar Entities

• $$$USEPARTS causes NLP to match the beginning of each part (word) for similarity. For texts in English and most
other languages this is generally the preferred setting. $$$USEPARTS is the default.

• $$$USENGRAMS causes NLP to match words and linguistic units within words (n-grams) for similarity. This mode
is used when the source text language compounds words. For example, $$$USENGRAMS would commonly be used
with German, a language which regularly forms compound words. $$$USENGRAMS would not be used with English,
a language which does not compound words. $$$USENGRAMS can only be used in a domain that has the EnableNgrams

domain parameter set.

8.9 Listing Related Entities
An entity is related to another entity if both occur in a CRC. By default, the related entity can be either a master concept
or a slave concept. (Refer to “Limiting by Position” (below) to override this default.)

The following example shows how NLP returns related entities. It first determines how many CRCs contain the entity
“student pilot” and lists these CRCs. (In this small example, you can simply read all the CRCs to see what is related to
“student pilot”; in a much larger collection of sources this would not be practical.) The program example then lists all of
the entities that are related to “student pilot” as either slave or master (you can confirm these relations by matching these
entities against the CRCs listed earlier):

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," total sources",!!
ContainCRCQuery
 SET crccount = ##class(%iKnow.Queries.CrcAPI).GetCountByEntities(domId,$LB("student pilot"))
 WRITE crccount," CRCs contain 'student pilot'",!
 DO ##class(%iKnow.Queries.CrcAPI).GetByEntities(.result,domId,$LB("student pilot"),1,crccount)
 SET i=1
 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 SET relcount = ##class(%iKnow.Queries.EntityAPI).GetRelatedCount(domId,$LB("student pilot"))
 WRITE !,relcount," entities are related to 'student pilot':",!
RelatedEntityQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetRelated(.rresult,domId,$LB("student pilot"),1,relcount)
 SET j=1

78 Using InterSystems Natural Language Processing (NLP)

NLP Queries

 WHILE $DATA(rresult(j)) {
 WRITE $LISTTOSTRING(rresult(j),",",1),!
 SET j=j+1 }

8.9.1 Limiting by Position

The position of an entity can be Master Concept, Relation, or Slave Concept. By default, the GetRelated() method returns
all related concepts regardless of position and does not return relations. You can change this default by specifying a macro
constant for the 8th parameter (positiontomatch). The available constants are as follows:

MeaningValueConstant

Master Concepts1$$$USEPOSM

Relations2$$$USEPOSR

Master Concepts and Relations3$$$USEPOSMR

Slave Concepts4$$$USEPOSS

Master Concepts and Slave
Concepts

5$$$USEPOSMS (the default)

Relations and Slave Concepts6$$$USEPOSRS

Master Concepts, Relations, and
Slave Concepts

7$$$USEPOSALL

The following example separates the related master concepts and the related slave concepts. (Note that $$$USEPOSM
means that the supplied string is the master concept in the CRC, and the related entities are the slave concepts.)

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," total sources",!!
ContainCRCQuery
 SET crccount = ##class(%iKnow.Queries.CrcAPI).GetCountByEntities(domId,$LB("student pilot"))
 WRITE crccount," CRCs contain 'student pilot'",!
 DO ##class(%iKnow.Queries.CrcAPI).GetByEntities(.result,domId,$LB("student pilot"),1,crccount)
 SET i=1

Using InterSystems Natural Language Processing (NLP) 79

Listing Related Entities

 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 SET relcount = ##class(%iKnow.Queries.EntityAPI).GetRelatedCount(domId,$LB("student pilot"))
 WRITE !,relcount," entities are related to 'student pilot':",!

ListRelatedMastersQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetRelated(.mresult,domId,$LB("student
pilot"),1,relcount,"","",$$$USEPOSM)
 WRITE !,"The following have 'student pilot' as a master:",!
 SET j=1
 WHILE $DATA(mresult(j)) {
 WRITE $LISTTOSTRING(mresult(j),",",1),!
 SET j=j+1 }
ListRelatedSlavesQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetRelated(.sresult,domId,$LB("student
pilot"),1,relcount,"","",$$$USEPOSS)
 WRITE !,"The following have 'student pilot' as a slave:",!
 SET k=1
 WHILE $DATA(sresult(k)) {
 WRITE $LISTTOSTRING(sresult(k),",",1),!
 SET k=k+1 }

8.10 Counting Paths
The following example shows the count of paths and the count of sentences for 50 sources. Commonly there are more paths
than sentences in a source. However, it is possible that there may be more sentences than paths in some sources.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 WRITE ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)," total sources",!!
PathCountBySource
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,50)
 SET i=1
 WHILE $DATA(result(i)) {
 SET srcId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET fullref = $PIECE(extId,":",3,4)
 SET fname = $PIECE(fullref,"\",$LENGTH(extId,"\"))
 SET numPathS = ##class(%iKnow.Queries.PathAPI).GetCountBySource(domId,$LB(srcId))
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 WRITE numPathS," paths and ",numSentS," sentences in ",fname,!
 SET i=i+1 }

80 Using InterSystems Natural Language Processing (NLP)

NLP Queries

8.11 Listing Similar Sources
The NLP semantic analysis engine can list which sources are similar to a specified source. Similarity between sources is
determined by the number of entities that appear in both sources (the overlap), and the percentage of the source contents
that contain overlap.

The GetSimilar() method can calculate similarity of sources to a specified source. Because of the potentially large number
of similar sources, this method is commonly used with a filter to limit the set of sources considered. GetSimilar() can use
your choice of two algorithms, each of which takes an algorithm parameter:

• Basic similarity of items ($$$SIMSRCSIMPLE, the default). Available algorithm parameters are “ent” (entity similarity,
the default), “crc” (Concept-Relation-Concept sequence), or “cc” (Concept + Concept pair).

• Using semantic dominance calculations ($$$SIMSRCDOMENTS). The algorithm parameter is a boolean flag that
specifies limiting similarity to sources that contain a dominant entity that is also a dominant entity in the specified
source.

For each similar source, NLP returns a list of elements with the following format:

srcId,extId,percentageMatched,percentageNew,nbOfEntsInRefSrc,nbOfEntsInCommon,nbOfEntsInSimSrc,score

The source ID, an integer assigned by NLP.srcId

The external ID for the source, a string value.extId

The percentage of the contents of the source that is the same as
the match source.

percentageMatched

The percentage of the contents of the source that is new. New
contents are those that do not match with the match source.

percentageNew

The number of unique entities in the source being referenced
(matched against this source).

nbOfEntsInRefSrc

The number of unique entities that are found in both sources.nbOfEntsInCommon

The number of unique entities in this source.nbOfEntsInSimSrc

The similarity score, expressed as a fractional number. An
identical source would have a similarity score of 1.

score

The following example demonstrates the listing of similar sources. It first limits the set of test sources to those that may
describe an engine failure incident, by using GetByEntities() to select for a list of appropriate entities. It then uses
GetSimilar() to find sources similar to these test sources, which may indicate a pattern of similar incidents. GetSimilar()
takes the default similarity algorithm ($$$SIMSRCSIMPLE) and its default algorithm parameter (“ent”). The program
displays only those similar sources with a high similarity score (>.33). The similarity display omits the source external IDs:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData

Using InterSystems Natural Language Processing (NLP) 81

Listing Similar Sources

 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET totsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE totsrc," total sources",!
SimiarSourcesQuery
 SET engineents = $LB("engine","engine failure","engine power","loss of
power","carburetor","crankshaft","piston")
 DO ##class(%iKnow.Queries.SourceAPI).GetByEntities(.result,domId,engineents,1,totsrc)
 SET i=1
 WHILE $DATA(result(i)) {
 SET src = $LISTTOSTRING(result(i),",",1)
 SET srcId = $PIECE(src,",",1)
 WRITE "Source ",srcId," contains an engine incident",!
 DO ##class(%iKnow.Queries.SourceAPI).GetSimilar(.sim,domId,srcId,1,50,"",$$$SIMSRCSIMPLE,$LB("ent"))

 SET j=1
 WHILE $DATA(sim(j)) {
 SET simlist=$LISTTOSTRING(sim(j))
 IF $PIECE(simlist,",",8) > .33 {
 WRITE " similar to source ",$PIECE(simlist,",",1),": "
 WRITE $PIECE(simlist,",",3,8),! }
 SET j=j+1 }
 SET i=i+1 }

8.12 Summarizing a Source
The NLP semantic analysis engine can summarize a source text by returning the most relevant sentences. It returns a user-
specified number of sentences in the original sentence order, selecting those sentences that have the highest similarity to
the overall content of the source text. NLP determines relevance by calculating an internal relevancy score for each sentence.
Sentences that contain concepts that appear many times in the source text are more likely to be included in the summary
than those that contain concepts that only appear once in the source text. NLP considers the overall frequency of each
concept, the similarity of each concept to the most frequent concepts in the source, and other factors.

Summarizing a source is only available if the Summarize property was set to 1 in the Configuration when loading the
source. The default Configuration specifies Summarize=1.

The accuracy of a summary therefore depends on two factors:

• The source text must be large enough to permit meaningful frequency analysis, but not too large. NLP summarization
works best on texts the length of a chapter or article. A book-length text should be summarized chapter-by-chapter.

• The number of sentences in the summary should be a large enough subset of the original for the returned sentences to
form a readable summary text. The minimum summary percentage is between 25% and 33%, depending on the contents
of the text.

NLP provides three summary methods:

• GetSummary() which returns each sentence of the summary text as a separate result. The sentence Id is returned as
the first element of each returned sentence.

82 Using InterSystems Natural Language Processing (NLP)

NLP Queries

• GetSummaryDirect() which returns the summary text as a single string. By default, the sentences within this string
are separated by an ellipsis: a space followed by three periods, followed by a space. For example, “This is sentence
one. ... This is sentence two.” You may specify a different sentence separator, if desired. Because this method concate-
nates multiple sentences into a single string, it may attempt to create a string longer than the InterSystems IRIS maximum
string length. When the maximum string length is reached, InterSystems IRIS sets this method’s isTruncated boolean
output parameter to 1, and truncates the remaining text.

• GetSummaryForText() which supports compiling a summary of a user-supplied string directly, rather than by sup-
plying a specific source ID.

For details on what NLP considers a sentence, refer to the Logical Text Units Identified by NLP section of the “Conceptual
Overview” chapter.

The following example goes through the source texts in a domain until it finds one that contains more than 100 sentences.
It then uses GetSummary() to summarize that source to half of its original sentences:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceSentenceTotals
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
 SET numSentD=##class(%iKnow.Queries.SentenceAPI).GetCountByDomain(domId)
 WRITE "These sources contain ",numSentD," sentences",!!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId)
SentenceCounts
 FOR i=1:1:numSrcD {
 SET srcId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET fullref = $PIECE(extId,":",3,4)
 SET fname = $PIECE(fullref,"\",$LENGTH(extId,"\"))
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 IF numSentS > 100 {WRITE fname," has ",numSentS," sentences",!
 GOTO SummarizeASource }
 }
 QUIT
SummarizeASource
 SET sumlen=$NUMBER(numSentS/2,0)
 WRITE "total sentences=",numSentS," summary=",sumlen," sentences",!!
 DO ##class(%iKnow.Queries.SourceAPI).GetSummary(.sumresult,domId,srcId,sumlen)
 FOR j=1:1:sumlen { WRITE "[S",j,"]: ",$LISTGET(sumresult(j),2),! }
 WRITE !,"END OF ",fname," SUMMARY",!!
 QUIT

Using InterSystems Natural Language Processing (NLP) 83

Summarizing a Source

Note that $NUMBER is used to assure that the specified summary sentence count is an integer. $LISTGET is used to
remove the sentence Id and return just the sentence text.

The following example uses GetSummaryDirect() to return the same summary as a single concatenated string. It then
uses $EXTRACT to divide the string into 38-character lines for display purposes:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceSentenceTotals
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
 SET numSentD=##class(%iKnow.Queries.SentenceAPI).GetCountByDomain(domId)
 WRITE "These sources contain ",numSentD," sentences",!!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId)
SentenceCounts
 FOR i=1:1:numSrcD {
 SET srcId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET fullref = $PIECE(extId,":",3,4)
 SET fname = $PIECE(fullref,"\",$LENGTH(extId,"\"))
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 IF numSentS > 100 {WRITE fname," has ",numSentS," sentences",!
 GOTO SummarizeASource }
 }
 QUIT
SummarizeASource
 SET sumlen=$NUMBER(numSentS/2,0)
 WRITE "total sentences=",numSentS," summary=",sumlen," sentences",!!
 SET summary = ##class(%iKnow.Queries.SourceAPI).GetSummaryDirect(domId,srcId,sumlen)
FormatSummaryDisplay
 SET x=1
 SET totlines=$LENGTH(summary)/38
 FOR i=1:1:totlines {
 WRITE $EXTRACT(summary,x,x+38),!
 SET x=x+39 }
 WRITE !,"END OF ",fname," SUMMARY"

8.12.1 Custom Summaries

NLP permits you to generate custom summaries for sources by specifying a summaryConfig parameter string. Custom
summaries are provided for those who desire to tune the content of NLP generated summaries to their specific needs.
Custom summaries allow you to absolutely include, preferentially include, or absolutely exclude sentences into the summary.
You can, for example, include or exclude standard components of sources that always appear at the same location, such as

84 Using InterSystems Natural Language Processing (NLP)

NLP Queries

a title, byline, copyright, abstract, or summary. You can also absolutely or preferentially include or exclude sentences that
contain a specified word.

The source summarization operation first gives each sentence a numeric summary weight, and then creates the summary
by selecting the appropriate number of sentences with the highest weights. You can influence this ranking by specifying a
summaryConfig parameter to the summary method.

The summaryConfig parameter value is a string consisting of one or more specifications. Each specification consists of
three elements separated by vertical bars. For example, "s|2|false". You can concatenate multiple specifications using
a vertical bar. For example, "s|1|true|s|2|false". The summaryConfig parameter default is the empty string.

You can configure the summary to select sentences according to the following:

• Always (or never) include a sentence.

– By sentence number: "s|1|true" mean that sentence (s) number 1 is always included in the summary (true).
For example, if the sources always contain a title, it can be beneficial to always include the first sentence (the title)
in the summary. If the second line of each source is an author byline, and you never want this included in the
summary, you can specify this as "s|2|false". You can also specify that the last sentence should never be
included in the summary: "s|-1|false"; this might be appropriate if all of the sources end with a transcription
reference or journal citation. Sentences in a source are numbered forward from 1, or numbered backwards from
the end of the source as -1, -2, and so forth.

– By word: "w|requirement|true" mean that any sentence containing the word (w) requirement is always
included in the summary (true). You can also exclude sentences containing a specific word. For example,
"w|foreign|false" excludes all sentences that contain the word foreign from the summary. A “word” can
be one or more whole words: it can consist of a string of multiple words separated by spaces; it cannot consist of
a partial word string. Note that words are normalized, and thus must be specified in all lowercase letters.

• Give a sentence more summary weight. This increases the chances that the sentence will appear in the summary.
Available weight values are the integers 0 through 9.

– By sentence number: "s|1|3" mean that sentence (s) number 1 has its summary weight increased by a factor
of 3. For example, the title (first sentence) of sources should be included if it is somewhat descriptive of the contents,
but not included if it is not directly descriptive (for example, a literary quotation). Sentences in a source are numbered
forward from 1, or numbered backwards from the end of the source as -1, -2, and so forth.

– By word: "w|requirement|2" mean that any sentence containing the word (w) requirement has its summary
weight increased by a factor of 2. A “word” can be one or more whole words: it can consist of a string of multiple
words separated by spaces; it cannot consist of a partial word string. Note that words are normalized, and thus
must be specified in all lowercase letters.

You can specify multiple summary customizations by concatenation. For example:
"s|1|true|s|2|false|w|surgery|3|w|hypnosis|false" (always include the first sentence, never include the
second sentence, increase the summary weight of all sentences containing the word “surgery”, exclude all sentences con-
taining the word “hypnosis”.

Thus the user can give more or less importance to specific words and/or sentences. The weight of sentences affected by
more than one of the specifications in the summaryConfig will be resolved by the Custom Summaries algorithm. This
algorithm also applies when there is a conflict between specifications that apply to the same sentence:

• If there is a conflict between a sentence (s) specification and a word (w) specification, the sentence specification wins.

• If there is a conflict between an include (true) and an exclude (false) involving two s specifications, or two w
specifications, the include specification wins.

• If there is a conflict between the specified summary length and the number of sentences that must be included or
number of sentences that must be excluded, the summary length is ignored.

Using InterSystems Natural Language Processing (NLP) 85

Summarizing a Source

The options for custom summaries can be set by means of the summaryConfig parameter in the
%iKnow.Queries.SourceAPI.GetSummary() and %iKnow.Queries.SourceAPI.GetSummaryForText() methods.

8.13 Querying a Subset of the Sources
NLP provides filters that allow you to include or exclude sources from a query. You can include or exclude sources based
on:

• Random sampling of sources.

• Source contents: specified entities or entities that match a dictionary.

• Source characteristics (metadata): including the source Id, sentence count, and the source’s indexed date (the date the
source was loaded into NLP).

• User-defined metadata characteristics of the sources.

NLP supports the combining of multiple filters through logical AND and logical OR operators. For further details, refer to
the Filtering chapter of this manual.

86 Using InterSystems Natural Language Processing (NLP)

NLP Queries

9
Semantic Attributes

InterSystems NLP identifies concepts and their context in a natural language text.

Concepts are indivisible word groups that have a meaning on their own, and are often associated with other concepts in a
sentence by relations. For example, in the sentence “Patient is being treated for acute pulmonary hypertension,” NLP
identifies the word groups “patient” and “acute pulmonary hypertension” as concepts. These concepts are associated by
the relation “is being treated for”.

Context is provided by associating a concept with a semantic attribute. For example, in the sentence “Patient is not being
treated for acute pulmonary hypertension,” the concept “acute pulmonary hypertension” has the same meaning, but its
context is clearly different. The context for this concept is that it appears in a part of the sentence that is negated. An
application created with NLP can provide much more focused results by differentiating instances of a concept that are not
negated from those that are.

Negation is one of several semantic attributes that associate concepts with specific contexts.

NLP supports the following semantic attributes:

• Negation: (red) The negation attribute identifies a part of a sentence as expressing negation. A negation word or phrase
negates the meaning of the associated concept or path. For example, “no”, “do not”, “never fully”, “would not”,
“without”, “neither”, “nowhere”, “nothing”.

• Measurement: (purple) The measurement attribute identifies a part of a sentence as having an associated numeric
measurement. A measurement attribute can be a count, or can identify dimensions, volume, weight, currency amounts,
or other numerically quantified concepts. For example, “single item”, “three groups”, “12 feet”, “half”, “$200”, “more
than 1.5 billion people”, “a few thousand years old”, “a pair of scientists”, “several widgets”, “fewer averse effects”.

• Time: (orange) The time attribute identifies a part of a sentence as specifying a date or time. This can be a specific
time, such as “the year 1848”, “Thursday”, “last January”, “summer”, “evening”, “the 1990s”, “5:00pm”, “this year’s
award”, “today”, or it can be a relative time sequence, such as “now”, “then”, “later”, “at that time”, “eventually”.

• Duration: (green) The duration attribute identifies a length of time. For example, “150 years”, “several hours”, “days”,
“more than two years”, “the period when”, “long-term”, “temporary”, “permanent”, “a few thousand years”.

• Frequency: (yellow) The frequency attribute identifies instances or repetitions in time, and identifies ordinal numbers
that indicate a specific instance. For example, “sometimes”, “first time”, “often”, “usually”, “twice”, “daily”, “every
month”, “annually”, “the fourth attempt”.

• Sentiment: The two sentiment attributes identify a part of a sentence as having either a positive sentiment or a negative
sentiment. For example, the words “avoid”, “harm”, “reject” typically convey a negative sentiment in many (but not
all) contexts; the words “approve”, “accept”, “beneficial” convey a positive sentiment. Because sentiment terms are
highly dependent on the kind of texts being analyzed, NLP does not automatically identify sentiment terms. You can
create a list of positive and negative sentiment terms using the NLP UserDictionary. These terms are then identified
in the texts by the NLP engine, which determines which parts of the sentence or path is affected by it.

Using InterSystems Natural Language Processing (NLP) 87

An NLP attribute flag is associated with one or more marker terms (word or short phrase) that affects the interpretation of
a path or sentence. A part of a path or sentence is flagged as being affected by that attribute, and can thus be separated from
similar parts of paths or sentences that do not have the attribute.

9.1 Negation
Negation is the process that turns an affirmative sentence (or part of a sentence) into its opposite, a denial. For example,
the sentence “I am a doctor.” can be negated as “I am not a doctor.” In analyzing text it is often important to separate
affirmative statements about a topic from negative statements about that topic.

NLP provides a means to determine if a sentence or path is negated. During source indexing NLP associates the attribute
“negation” with a sentence and indicates which part of the text is negated.

While in its simplest form negation is simply associating “no” or “not” with an affirmative statement or phrase, in actual
language usage negation is a more complex and language-specific operation. There are two basic types of negation:

• Formal, or grammatical, negation is always indicated by a specific morphological element in the text. For example,
“no”, “not”, “don’t” and other specific negating terms. These negating elements can be part of a concept “He has no
knowledge of” or part of a relation “He doesn’t know anything about”. Formal negation is always binary: a sentence
(or part of a sentence) either contains a negating element (and is thus negation), or it is affirmative.

• Semantic negation is a complex, context-dependent form of negation that is not indicated by any specific morphological
element in the text. Semantic negation depends upon the specific meaning of a word or word group in a specific context,
or results from a specific combination of meaning and tense (for example, conjunctive and subjunctive tenses in
Romance languages). For example, “Fred would have been ready if he had stayed awake” and “Fred would have been
ready if the need had arisen” say opposite things about Fred’s readiness. Semantic negation is not a binary principle;
it is almost never absolute, but is subject to contextual and cultural insights.

The NLP language models contain a variety of language-specific negation words and structures. Using these language
models the NLP analysis engine is able to automatically identify and flag for future use most instances of formal negation
as part of the source loading operation. However, NLP cannot identify instances of semantic negation.

The largest unit of negation in NLP is a path; NLP cannot identify negations in text units larger than a path. Many, but not
all, sentences comprise a single path.

9.1.1 Properties of Formal Negation

Formal negation can be defined by three properties:

• Negation markers: formal negation is always marked by one or more negation markers. These negation markers can
be part of a concept or a relation. Some examples of negation markers in English are no, not, doesn’t, isn’t, hasn’t,
neither, nor, never, nothing, none, nobody, nowhere. NLP always identifies a negation marker as part of a concept or
part of a relation.

• Negation span: negation is always expressed in the broader context of a statement or a sentence. The effect of formal
negation is that the statement or sentence (or some part of it) is negated. Therefore, it is important to determine the
span of the negation, the part of the sentence that is made negative by the negation marker(s). The maximum span of
a formal negation is a full sentence.

• Negation stopper: in many cases the span of the negation is not a full sentence. The span of the negation is terminated
by a negation stopper, such as the words “but” and “or”. NLP identifies negation stoppers and uses this information
to limit negation span.

88 Using InterSystems Natural Language Processing (NLP)

Semantic Attributes

NLP uses these properties to identify negated units of text. Negation markers are tagged at the entity (concept or relation)
level by assigning a negation attribute. Negation span is tagged at the path level with negation-begin and negation-end tags.

Japanese supports the negation attribute at the entity level, but because of the fundamentally different definition of paths
in Japanese, path expansion is not supported. Therefore, negation for Japanese does not necessarily expand to all affected
entities at the path level.

9.1.2 Using Negation Attributes

Negation analysis information can be used with the following methods:

• %iKnow.Queries.SourceAPI: GetAttributes()

• %iKnow.Queries.EntityAPI: GetOccurrenceAttributes() and IsAttributed()

• %iKnow.Queries.PathAPI: GetAttributes()

• %iKnow.Queries.SentenceAPI: GetAttributes() and GetHighlighted()

You can specify the negation attribute ID using the $$$IKATTNEGATION macro, defined in the %IKPublic #Include file.

9.1.3 Negation Attribute Structure

Negation is implemented in NLP as an attribute. That is, sources, sentences, or paths that contain negation have the negation
attribute. This attribute is a %List structure with the following elements:

• Element 2 is the word “negation”

• Element 3 is the entity position that contains the first negation marker. A negation marker can be part of a relation or
a concept. For example, in “The White Rabbit usually hasn't any time.” the negation marker is in entity 3, the relation
“usually hasn’t”. In “The White Rabbit usually has no time.” the negation marker is in entity 4, the concept “no time”.
Note that for this position count non-relevant words (such as “the” and “a”) are counted as separate entities.

• Element 4 is the scope of the negation as a count of entities. Negation scope is counted from the first entity containing
a negation marker to the last entity containing a negation marker. For example, “The man is neither fat nor thin” has
a negation scope of 3 entities: “is neither/fat/nor”.

• Element 5 shows the position of the negation marker within the entity as a bit map. A “1” indicates a word that is a
negation marker; a “0” indicates a word that is not a negation marker. A negation marker consisting of two adjacent
words, such as “is not”, is indicated as “11”. Entity mapping stops when the negation marker has been indicated. For
example, the relation “is often not” is “001”, while the relation “often is not” is “011”, and the relation “is not often”
is “11”.

9.1.4 Negation Bit Map

Element 5 is the negation bit map. It indicates where the negation markers are in the negation scope. When the negation
scope is 1, this is a simple bit map. When the negation scope is greater than one, this is a series of bit maps separated by
spaces, one bit map for each entity within the negation scope.

Within the negation scope, if an entity contains a negation marker the negation marker and each word preceding it is indicated
by either a 1 (negation marker word) or a 0 (word preceding the negation marker). If an entity within the negation scope
does not contain a negation marker, the whole entity is represented by a single 0. Note that non-relevant words, such as
“a” and “the”, are considered to be separate entities. Some examples of negation bit mapping are shown in the following
table:

Using InterSystems Natural Language Processing (NLP) 89

Negation

Sentence Text with / entity dividers and underlined negation markersNegation Bit Map

Bartleby / is neither / busy / nor idle.01 0 1

Bartleby / is neither / sixty-five years old / nor retired.01 0 1

Bartleby / is / no idler / and certainly is / no loafer.1 0 1

Bartleby / is not / my / favorite fictional character / but neither is / he / my / least
favorite.

11 0 0 01

Bartleby / isn’t / my / favorite fictional character / but neither is / he / my / least
favorite.

1 0 0 01

Bartleby / is either not / trying very hard / or he is not / succeeding.001 0 0011

Bartleby / is not / a / wholly realistic character / and yet is not / wholly
unbelievable.

11 0 0 0011

Bartleby / never works, / but he is never / wholly idle.1 0001

Bartleby / does / nothing / and yet never is / he / idle.1 001

The largest entity bit map is 8 bits. In rare cases a negation marker can be more than eight words from the beginning of its
entity. If the negation marker is a two-word marker at positions 8 and 9, the second “1” is omitted (“00000001”); if the
negation marker is at position 9 or greater, no bit map is returned. In the following examples the negation marker is in the
second entity, a relation containing many words (due to the semantic ambiguity of the word “in”): “They start when you
get in and are not finished when you leave.” maps as “00000011”; “They start when you get in and they are not finished
when you leave.” maps as “00000001” (second word of the negation marker not mapped); “They often start when you get
in and they are not finished when you leave.” returns no bit map.

You can determine if a negation bit map has been omitted by comparing the Element 4 scope of negation entity count with
the Element 5 number of blank-separated bit maps. If these two counts do not match one or more negation entity bit maps
are missing.

9.1.5 Negation and Dictionary Matching

NLP recognizing negated entities when matching against a dictionary. It calculates the number of entities that are part of
a negation and stores this number as part of the match-level information (as returned by methods such as
GetMatchesBySource() or as the NegatedEntityCount property of %iKnow.Objects.DictionaryMatch). This allows you to
create code that interprets matching results by considering negation content, for example by comparing negated entities to
the total number of entities matched.

For further details, refer to the Smart Matching: Using a Dictionary chapter of this manual.

9.1.6 Negation Examples

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following example uses %iKnow.Queries.SourceAPI.GetAttributes() to search each source in a domain for paths
and sentences that have the negation attribute. It displays the PathId or SentenceId, the start position and the span of each
negation. To limit %iKnow.Queries.SourceAPI.GetAttributes() to paths, specify $$$IKATTLVLPATH rather than
$$$IKATTLVLANY:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)

90 Using InterSystems Natural Language Processing (NLP)

Semantic Attributes

 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeCause FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeCause")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
GetSourcesAndAttributes
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.srcs,domId,1,numSrcD)
 SET i=1
 WHILE $DATA(srcs(i)) {
 SET srcId = $LISTGET(srcs(i),1)
 SET i=i+1
 DO ##class(%iKnow.Queries.SourceAPI).GetAttributes(.att,domId,srcId,1,10,"",$$$IKATTLVLANY)
 SET j=1
 WHILE $DATA(att(j)) {
 IF $LISTGET(att(j),1)=1 {
 SET type=$LISTGET(att(j),2)
 SET level=$LISTGET(att(j),3)
 SET targId=$LISTGET(att(j),4)
 SET start=$LISTGET(att(j),5)
 SET span=$LISTGET(att(j),6)
 IF level=1 {WRITE "source ",srcId," ",type," path ",targId," start at ",start," span
",span,!}
 ELSEIF level=2 {WRITE "source ",srcId," ",type," sentence ",targId," start at ",start,"
 span ",span,!!}
 ELSE {WRITE "unexpected attribute level",! }
 }
 SET j=j+1
 }
 }

The following example uses %iKnow.Queries.SentenceAPI.GetAttributes() to find those sentences in each source in a
domain that have the negation attribute. It displays which sentence id of those sentences that have this attribute, and the
entity position that contains the negation marker. It then displays the text of these sentences.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeCause FROM Aviation.Event"

Using InterSystems Natural Language Processing (NLP) 91

Negation

 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeCause")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
GetSourcesAndSentences
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.srcs,domId,1,numSrcD)
 SET i=1
 WHILE $DATA(srcs(i)) {
 SET srcId = $LISTGET(srcs(i),1)
 SET i=i+1
 SET st = ##class(%iKnow.Queries.SentenceAPI).GetBySource(.sent,domId,srcId)
 SET j=1
 WHILE $DATA(sent(j)) {
 SET sentId=$LISTGET(sent(j),1)
 SET text=$LISTGET(sent(j),2)
 SET j=j+1
CheckSentencesForNegation
 SET atstat=##class(%iKnow.Queries.SentenceAPI).GetAttributes(.att,domId,sentId)
 SET k=1
 WHILE $DATA(att(k)) {
 WRITE "sentence ",sentId," has attribute=",$LISTGET(att(k),2)
 WRITE ", marker at entity position=",$LISTGET(att(k),3),!
 /* Format for display */
 WRITE sentId,": "
 SET x=1
 SET totlines=$LENGTH(text)/60
 FOR L=1:1:totlines {
 WRITE $EXTRACT(text,x,x+60),!
 SET x=x+61 }
 WRITE "END OF SENTENCE ",sentId,!!
 SET k=k+1 }
 }
 }

9.1.7 Adding Negation Terms

You can specify negation for other specific words or phrases using the NLP UserDictionary. Using the AddNegationTerm()
method, you can add a list of negation terms to a UserDictionary. When source texts are loaded into a domain, all appearances
of these terms are flagged with the negation marker.

9.1.8 Negation Special Cases

The following are a few peculiarities of negation in English:

• No.: The word “No.” (with capital letter and period, quoted or not quoted) in English is treated as an abbreviation. It
is not treated as negation and is not treated as the end of a sentence. Lowercase “no.” is treated as negation and as a
sentence ending.

• Nor: The word “Nor” at the beginning of a sentence is not marked as negation. Within the body of a sentence the word
“nor” is marked as negation.

• No-one: The hyphenated word “no-one” is treated as a negation marker. Other hyphenated forms (for example, “no-
where”) are not.

• False negatives: Because formal negation depends on words, not context, occasional cases of false negatives may
inevitably arise. For example, the sentences “There was no answer” and “The answer was no” are both flagged as
negation.

Because negation operates on sentence units, it is important to know what NLP does (and does not) consider a sentence.
For details on how NLP identifies a sentence, refer to the Logical Text Units Identified by NLP section of the “Conceptual
Overview” chapter.

92 Using InterSystems Natural Language Processing (NLP)

Semantic Attributes

9.2 Measurement
Documents commonly contain structured data elements that express a quantity. These can include counts, lengths, weights,
currency amounts, medication dosages, and other quantified expressions. These data element commonly consist of a numeric
expression (specified as either numbers or words) and either an associated concept term (23 widgets) for a count, or some
form of unit for a measurement. NLP annotates this combination of a number and a unit of measure as a measurement
marker term at the word level.

In addition to annotating the number and unit, InterSystems NLP uses attribute expansion rules to identify the other concepts
“involved” in the measurement. This annotated sequence of concepts captures what is being measured, rather than just the
measurement itself.

These expanded attributes can be used to:

• Extract all of the measurable facts in a document by highlighting them or displaying them in a list.

• Narrow the display of a specific concept to only those that are associated with a measurement.

Generally, any concept associated with a number is flagged with the measurement attribute. The exceptions are described
in “Time, Duration, and Frequency”.

9.3 Time, Duration, and Frequency
Documents may also contain structured data that expresses time, duration, or frequency. These are annotated as separate
attributes, commonly consisting of an attribute term as part of a concept. These attributes are identified based on marker
terms identified in the language. They may or may not include a specific number.

A number, either specified with numerals or with words is almost always treated as a measurement attribute. However, a
time attribute can contain a numeric, and a frequency attribute can contain an ordinal number.

The following are some of the guidelines in the English language model governing numbers:

• Numerics: A number with no associated term could be a measurement or a year. Numbers from 1900 through 2039
are assumed to be years and assigned the time attribute (1923, 2008 applicants). Numbers outside this range (1776)
are not considered to be years, unless the word “year” is specified (the year 1776). Isolated numbers outside this range
(1776) are assigned no attribute. Numbers outside this range with an associated term are assumed to be measurements
(1776 applicants). Numbers with numeric or currency punctuation (1,973, -1973, 1973.0, or $1973), and numbers
expressed in words (nineteen seventy-three) are assumed to be measurements. A valid time numeric (12:34:33) is
assigned the time attribute.

• Ordinal numbers: An ordinal in a concept with other words takes the frequency attribute when spelled out (the fourth
attempt), the measurement attribute when specified as a number (the 4th attempt). Spelled-out ordinals beyond “tenth”
do not take a frequency attribute. An ordinal by itself in a concept does not take an attribute (a fifth of scotch, came in
third).

A spelled out ordinal (first through tenth) following another number takes the measurement attribute as a fraction (one
third, two fifths), with exception of “one second” which takes the duration attribute.

An ordinal of any size with a month name takes the time attribute (sixteenth of October, October 16th, October sixteenth),
except May, which is ambiguous in English and therefore doesn’t take an attribute.

Using InterSystems Natural Language Processing (NLP) 93

Measurement

9.4 Sentiment
A sentiment attribute flags a sentence as having either a positive or negative sentiment. Sentiment terms are highly dependent
on the kind of texts being analyzed. For example, in a customer perception survey context the following terms might be
flagged with a sentiment attribute:

• The words “avoid”, “terrible”, “difficult”, “hated” convey a negative sentiment.

• The words “attractive”, “simple”, ”self-evident”, “useful”, “improved” convey a positive sentiment.

Because sentiment terms are often specific to the nature of the source texts, NLP does not automatically identify sentiment
terms. You can flag individual words as having a positive sentiment or a negative sentiment attribute. By default, no words
have a sentiment attribute. You can specify a sentiment attribute for specific words using the NLP UserDictionary. Using
the AddPositiveSentimentTerm() and AddNegativeSentimentTerm() methods, you can add a list of sentiment terms to
a UserDictionary. When source texts are loaded into a domain, each appearance of these terms and the part of the sentence
affected by it is flagged with the specified positive or negative sentiment marker.

For example, if “hated” is specified as having a negative sentiment attribute, and “amazing” is specified as having a positive
sentiment attribute, when NLP applies them to the sentence:

I hated the rain outside, but the running shoes were amazing.

Negative sentiment would affect “rain” and positive sentiment would affect “running shoes”.

Sentiment attributes are supported for the following languages: English, German, Portuguese, Russian, and Ukrainian.
Sentiment attributes are not currently supported for Japanese.

9.4.1 Using Sentiment Attributes

Sentiment Analysis information can be used with the following methods:

• %iKnow.Queries.SourceAPI: GetAttributes()

• %iKnow.Queries.EntityAPI: GetOccurrenceAttributes() and IsAttributed()

• %iKnow.Queries.PathAPI: GetAttributes()

• %iKnow.Queries.SentenceAPI: GetAttributes() and GetHighlighted()

You can specify a sentiment attribute ID using either the $$$IKATTSENPOSITIVE or $$$IKATTSENNEGATIVE macro,
defined in the %IKPublic #Include file.

94 Using InterSystems Natural Language Processing (NLP)

Semantic Attributes

10
Stemming

NLP supports stemming, an optional feature when performing NLP indexing of sources. Stemming allows NLP to recognize
the stem form of a word that has several grammatical forms. For example, the stem of a noun is typically its nominative
singular form. The stem of a verb is typically its infinitive form. Stemming occurs at the entity level. This means that NLP
establishes the stem form of an entity, rather than the stem forms of the entity’s individual words. It is an additional level
of normalization from the original source text.

Note: Stemming support significantly increases NLP indexing space requirements and impacts NLP indexing performance.
It is recommended that you only activate stemming for a domain when there is a real need for this functionality.
Stemming is recommended for use with Russian and Ukrainian text sources.

Stemming is not performed on path-relevant entities.

Stemming is not supported for Japanese at this time.

Stemming may result in a stemmed entity that is no longer grammatically valid. For example, the stem for of the entity
“two bananas” would be “two banana”. Because the stem form of an entity may not actually exist in the indexed sources,
NLP pairs the stem form with a “representation form” which is the closest entity (as measured by the Levenshtein distance)
to the stem form that actually exists as an indexed entity in the sources. The representative form can, of course, be identical
to the stem form, if the stem form exists as an indexed entity in the sources.

NLP uses a plug-in architecture for generating stems, enabling the use of third-party stemming tools, if available. NLP uses
Hunspell to generate stems. This means that when stemming is required, NLP searches for the Hunspell affix (.aff) file for
the specified language in the INSTALLDIR/dev/hunspell directory. If no Hunspell dictionary is provided for the specified
language, NLP searches for the %Text subclass for the specified language. InterSystems IRIS Data Platform™ provides
%Text datatype classes for five of the NLP supported languages: %Text.English (en), %Text.French (fr), %Text.German

(de), %Text.Portuguese (pt), and %Text.Spanish (es). If neither a Hunspell dictionary file nor a language-specific %Text
class is available, NLP uses the %Text.Text class. Refer to the %Text package class documentation in the InterSystems Class
Reference for further details.

10.1 Configuring Stemming
Stemming can only be activated or deactivated for an empty domain. Once a domain is populated with source texts, you
cannot change the stemming option for that domain, except by first removing all domain contents.

To activate stemming for an empty NLP domain, set the $$$IKPSTEMMING domain parameter to 1. Stemming is inactive
by default. To deactivate stemming for an empty NLP domain, set $$$IKPSTEMMING to 0.

Using InterSystems Natural Language Processing (NLP) 95

The domain must be empty when setting this parameter. When you add source texts to a domain where stemming is activated,
NLP creates a stem form for every entity and populates appropriate data structures so that stems can be queried.

Create an instance of the stemmer and specify the default language (or languages, using %iKnow.Stemming.MultiLanguage-
Config). Specify languages using their ISO 639-1 two-character abbreviations.

10.1.1 Hunspell

InterSystems IRIS provide Hunspell files for Russian (ru) and Ukrainian (uk) in the dev/hunspell directory. You should
place Hunspell dictionary files for other languages in the InterSystems IRIS dev/hunspell directory.

NLP modifies the behavior of Hunspell stemming in one important respect. Hunspell stemming removes prefixes from
words. NLP restores prefixes removed by Hunspell before indexing the resulting stem forms.

If Hunspell returns more than one possible stem for a word, NLP will attempt to disambiguate these options using the entity
context to determine if the entity is a concept or a relation.

10.2 Stem Retrieval Methods
The following %iKnow.Queries.EntityAPI methods return stem values:

• GetStem() returns the stem string corresponding to a specified entity string.

• GetStemId() returns the stem ID for a specified stem string, if the stem string exists within the domain.

• GetStemValue() returns the stem string for a specified stem ID.

• GetStemRepresentationForm() returns the representation form string for a specified stem ID.

You can also return the frequency and spread for a specified stem ID.

10.3 Using Stems
Many NLP query methods allow you to query on stems rather than on entities. By setting the method argument pUseStems=1,
these query methods return values based on stem form values rather than exact entity values. The default, pUseStems=0
causes these query methods to return values based on exact entity values.

For example, the GetTop() method, by default, returns the most frequently occurring entities in a domain. If you specify
pUseStems=1, this method returns the most frequently occurring stem forms in a domain, potentially merging together as
a single stem form multiple entities that differ only in grammatical form.

The semantic proximity GetProfile() method can also set pUseStems=1 to return the proximity profile of stem forms, rather
than entities, in a domain.

If you set pUseStems=1 in a domain that does not support stemming, the method returns no results.

For further details, refer to the NLP Queries chapter of this manual.

96 Using InterSystems Natural Language Processing (NLP)

Stemming

11
Blacklists

A Blacklist is a list of entities that you do not want a query to return. For example, if your source texts include greetings
and salutations, you might want to put “many thanks”, “best regards”, and other stock phrases with no real information
content in your Blacklist. A Blacklist might also be used to suppress top concepts that are too general and widespread to
be of interest when analyzing query results.

Note: When displaying results of a query that applied a Blacklist, it is important to note that use of a Blacklist silently
changes the query results by suppressing some information. Make sure the Blacklists used are relevant for the
data contents, for the user looking at the query results, and for the context in which query results are displayed.

11.1 Creating a Blacklist
You can define a Blacklist that is assigned to a specific domain, or define a Blacklist that is domain-independent (cross-
domain) and can be used by any domain in the current namespace. You can define a Blacklist in two ways:

• Using the InterSystems IRIS Domain Architect. This interface can be used define a Blacklist within a domain, add and
delete Blacklist entities, delete a Blacklist, or list all Blacklists defined for a domain. This interface supports populating
a Blacklist by specifying entities as strings.

• Using the %iKnow.Utils.MaintenanceAPI class methods to define, populate, and maintain Blacklists. This class allows
you to create both domain-specific and cross-domain Blacklists. This class provides methods for populating a Blacklist
either by specifying entities as strings or by specifying entities by entity Id. Use of some of the Blacklist
%iKnow.Utils.MaintenanceAPI class methods is shown in this chapter.

You can use the CopyBlackLists() method of the %iKnow.Utils.CopyUtils class to copy all defined Blacklists in a domain
to another domain.

The Domain Explorer and the Basic Portal user interfaces support the use of Blacklists.

The following example creates a domain-specific Blacklist and populates it with elements. It then lists all Blacklists for
the domain, and all of the elements in this domain. Finally, it deletes the blacklist.

DomainGetOrCreate
 SET domn="mydomainwithbl"
 SET domId=##class(%iKnow.Domain).GetOrCreateId(domn)
 SET domoref=##class(%iKnow.Domain).%OpenId(domId)
 WRITE "The ",domn," domain with domain ID ",domId,!
CreateBlackList
 SET blname="AviationBlacklist"
 SET blId=##class(%iKnow.Utils.MaintenanceAPI).CreateBlackList(domId,blname,
 "Aviation non-mechanical terms Blacklist")
PopulateBlackList
 SET black=$LB("aircraft","airplane","flight","accident","event","incident","pilot",

Using InterSystems Natural Language Processing (NLP) 97

 "student pilot","flight instructor","runway","accident site","ground","visibility","faa")

 SET ptr=0
 FOR x=0:1:100 {
 SET moredata=$LISTNEXT(black,ptr,val)
 IF moredata=1 {
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).AddStringToBlackList(domId,blId,val)
 }
 ELSE { WRITE x," entities in Blacklist",!!
 GOTO ListBlacklist }
 }
ListBlacklist
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).GetBlackLists(.bl,domId,0)
 SET i=1
 WHILE $DATA(bl(i)) {
 WRITE $LISTTOSTRING(bl(i),",",1),!
 SET i=i+1 }
 WRITE "Printed the ",i-1," Blacklists",!
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).GetBlackListElements(.ble,domId,blId)
 /* IF stat=1 {WRITE "success",!}
 ELSE {WRITE "GetBlackListElements failed" QUIT } */
 SET j=1
 WHILE $DATA(ble(j)) {
 WRITE $LISTTOSTRING(ble(j),",",1),!
 SET j=j+1 }
 WRITE "Printed the ",j-1," Blacklist elements",!
CleanUp
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).DropBlackList(domId,blId)
 IF stat=1 {WRITE "Blacklist deleted",!}
 ELSE {WRITE "DropBlackList failed" QUIT }

The CreateBlackList() method allows you to specify both a name and a description for your Blacklist. A Blacklist name
can be any valid string of any length; Blacklist names are case-sensitive. The name you assign to a Blacklist must be unique:
for a domain-specific Blacklist it must be unique within the domain; for a cross-domain Blacklist it must be unique within
the namespace. Specifying a duplicate Blacklist name generates ERROR #8091. The Blacklist description is optional; it
can be a string of any length.

11.1.1 Blacklists and Domains

Each Blacklist you create can either be specific to a domain, or can be cross-domain (domain-independent) and usable by
any domain in the current namespace:

• A domain-specific Blacklist is assigned to a domain by specifying a domainId in the CreateBlackList() method. This
method returns a blacklistId as a sequential positive integer. Query methods that use this Blacklist reference it by this
blacklistId. A domain-specific Blacklist can support stemming.

• A cross-domain Blacklist is not assigned to a domain. Instead, you specify a domainId of 0 in the CreateBlackList()
method. This method returns a blacklistId as a sequential positive integer. Query methods that use this Blacklist reference
it by a negative blacklistId; for example, the Blacklist identified by blacklistId 8 is referenced by the blacklistId value
-8.

To populate a domain-specific Blacklist, you can use either AddEntityToBlackList() or AddStringToBlackList(). To
populate a cross-domain Blacklist, you can only use AddStringToBlackList().

GetBlackListElements() returns the empty string for the entUniId value for a cross-domain Blacklist.

The following example creates and populates two Blacklists, a domain-specific blacklist (AviationTermsBlacklist) and a
cross-domain blacklist (JobTitleBlacklist). The GetBlackLists() method returns both blacklists, because the pIncludeCross-
Domain boolean is set to 1. Note that GetBlackLists() returns the blacklist Id for the cross-domain blacklist as a negative
integer.

DomainGetOrCreate
 SET domn="mydomainwithbl"
 SET domId=##class(%iKnow.Domain).GetOrCreateId(domn)
 SET domoref=##class(%iKnow.Domain).%OpenId(domId)
 WRITE "The ",domn," domain with domain ID ",domId,!
CreateBlackList1
 SET blname="AviationTermsBlacklist"
 SET blId=##class(%iKnow.Utils.MaintenanceAPI).CreateBlackList(domId,blname,
 "Common aviation terms Blacklist")

98 Using InterSystems Natural Language Processing (NLP)

Blacklists

PopulateBlackList1
 SET black=$LB("aircraft","airplane","flight","accident","event","incident","airport","runway")
 SET ptr=0
 FOR x=0:1:100 {
 SET moredata=$LISTNEXT(black,ptr,val)
 IF moredata=1 {
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).AddStringToBlackList(domId,blId,val)
 }
 }
 WRITE "Blacklist ",blname," populated",!
CreateBlackList2
 SET bl2name="JobTitleBlacklist"
 SET bl2Id=##class(%iKnow.Utils.MaintenanceAPI).CreateBlackList(0,bl2name,
 "Aviation personnel Blacklist")
PopulateBlackList2
 SET jobblack=$LB("pilot","copilot","student pilot","flight instructor","passenger")
 SET ptr=0
 FOR x=0:1:100 {
 SET moredata=$LISTNEXT(jobblack,ptr,val)
 IF moredata=1 {
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).AddStringToBlackList(0,bl2Id,val)
 }
 }
 WRITE "Blacklist ",bl2name," populated",!!
ListBlacklists
 SET pIncludeCrossDomain=1
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).GetBlackLists(.bl,domId,pIncludeCrossDomain)
 SET i=1
 WHILE $DATA(bl(i)) {
 IF $LIST(bl(i),1)<0 {
 WRITE "cross-domain:",!,$LISTTOSTRING(bl(i),",",1),! }
 ELSE { WRITE "domain-specific:",!,$LISTTOSTRING(bl(i),",",1),! }
 SET i=i+1 }
 WRITE "Printed the ",i-1," Blacklists",!!
CleanUp
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).DropBlackList(domId,blId)
 IF stat=1 {WRITE "domain Blacklist deleted",!}
 ELSE {WRITE "first DropBlackList failed" }
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).DropBlackList(0,bl2Id)
 IF stat=1 {WRITE "cross-domain Blacklist deleted",!}
 ELSE {WRITE "second DropBlackList failed" }

11.2 Queries that Support Blacklists
The following query methods provide a parameter to specify Blacklists. You can specify multiple Blacklists to any of these
methods by specifying the Blacklist Ids as elements of a %List structure, using the $LISTBUILD function. You specify a
domain-specific blacklist as a positive integer blacklistId value; you specify a cross-domain blacklist as a negative integer
blacklistId value.

Entity Queries:

• %iKnow.Queries.EntityAPI.GetByFilter()

• %iKnow.Queries.EntityAPI.GetBySource()

• %iKnow.Queries.EntityAPI.GetCountByDomain()

• %iKnow.Queries.EntityAPI.GetCountBySource()

• %iKnow.Queries.EntityAPI.GetNewBySource()

• %iKnow.Queries.EntityAPI.GetRelated()

• %iKnow.Queries.EntityAPI.GetRelatedById()

• %iKnow.Queries.EntityAPI.GetSimilar()

• %iKnow.Queries.EntityAPI.GetSimilarCounts()

• %iKnow.Queries.EntityAPI.GetTop()

Using InterSystems Natural Language Processing (NLP) 99

Queries that Support Blacklists

Sentence Queries:

• %iKnow.Queries.SentenceAPI.GetNewBySource()

Source Queries:

• %iKnow.Queries.SourceAPI.GetSimilar(): NLP ignores blacklisted entities both when selecting similar entities and
when calculating similarity scores.

11.2.1 Blacklist Query Example

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following example suppresses non-mechanical aviation terms that are too general to be of interest. It uses
CreateBlackList() to create a Blacklist, uses AddStringToBlackList() to add entities to the Blacklist, then supplies the
Blacklist to the GetTop() method:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
CreateBlackList1
 SET blname="AviationTermsBlacklist"
 SET blId=##class(%iKnow.Utils.MaintenanceAPI).CreateBlackList(domId,blname,
 "Common aviation terms Blacklist")
PopulateBlackList
 SET black=$LB("aircraft","airplane","flight","accident","event","incident","pilot","airport",
 "student pilot","flight instructor","runway","accident site","ground","visibility","faa")

 SET ptr=0
 FOR x=0:1:100 {
 SET moredata=$LISTNEXT(black,ptr,val)
 IF moredata=1 {
 SET stat=##class(%iKnow.Utils.MaintenanceAPI).AddStringToBlackList(domId,blId,val)
 }
 }
 WRITE "Blacklist ",blname," populated",!

QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceQAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
TopEntitiesQuery
 DO ##class(%iKnow.Queries.EntityAPI).GetTop(.result,domId,1,20,"",0,0,0,0,$LB(blId))
 WRITE "NOTE: the ",blname," Blacklist",!,
 "has been applied to this list of top entities",!
 SET i=1
 WHILE $DATA(result(i)) {

100 Using InterSystems Natural Language Processing (NLP)

Blacklists

 SET outstr = $LISTTOSTRING(result(i),",",1)
 SET entity = $PIECE(outstr,",",2)
 SET freq = $PIECE(outstr,",",3)
 SET spread = $PIECE(outstr,",",4)
 WRITE "[",entity,"] appears ",freq," times in ",spread," sources",!
 SET i=i+1 }
 WRITE "Printed the top ",i-1," entities"

Using InterSystems Natural Language Processing (NLP) 101

Queries that Support Blacklists

12
Filtering Sources

You can use filters to include or exclude sources supplied to an NLP query. Often you do not wish to perform a query on
all of the loaded sources in the domain. A filter allows you to limit the scope of the query to only those sources that meet
the criteria of the filter. A filter selects sources based either on which entities are found in the source, or on some information
associated with the source itself (metadata). A filter always includes or excludes an entire source and is specified in each
query that uses that filter.

12.1 Supported Filters
NLP supplies a number of predefined filters, and provides facilities to allow users to easily define their own filters.

• Source Id: the SourceIdFilter and ExternalIdFilter allow you to select sources based on the Id of the source. NLP
assigns these values as part of the source indexing process.

• Random Sources: the RandomFilter allows you to select a random sample of the sources in a domain. You can specify
the sample either as an integer number of sources or as a percentage of the total sources.

• Sentence Count: the SentenceCountFilter allows you to select sources based on the minimum and/or maximum number
of sentences in the source. NLP counts the sentences in a source as part of the indexing process.

• Entity Match: NLP provides several filters that allow you to select sources based on the entities (concepts and relations)
found in each source. The DictionaryMatchFilter allows you to filter sources based on the minimum and/or maximum
number of dictionary matches to the contents of the source. (This filter replaces the deprecated SimpleMatchFilter.)
The DictionaryTermMatchFilter and DictionaryItemMatchFilter allow you to filter sources using the same kind of
dictionary matching, but limiting the match set to components of a dictionary, rather than the whole dictionary. These
dictionary filters can optionally perform standardized-form matching if the $$$IKPMATSTANDARDIZEDFORM
domain parameter is specified.

The ContainsEntityFilter allows you to filter sources by supplying a list of entities directly (rather than by defining
them in a dictionary). Optionally, ContainsEntityFilter can also filter sources by entities similar to the listed entities.
The ContainsRelatedEntitiesFilter allows you to filter sources by supplying a list of entities, two or more of which
must be related, meaning that they must appear in either the same path (the default) or the same CRC. Optionally,
ContainsRelatedEntitiesFilter can also filter sources by related entities similar to the listed entities.

• Indexed Date Metadata: NLP automatically provides one metadata field for every source, the DateIndexed field. NLP
assigns this field value as part of the source indexing process. By using the SimpleMetadataFilter, this field allows
you to select sources based on the date and time when they were indexed by NLP.

• User-Defined Metadata: NLP allows you to define filters using the SimpleMetadataFilter that select sources based on
data values that you have associated with a source.

Using InterSystems Natural Language Processing (NLP) 103

• SQL Query: the SqlFilter allows you to select sources based on the results of an SQL query.

You can use GroupFilter to logically combine the results of the filters you define.

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

12.2 Filtering by the ID of the Source
The most basic source filter is used to limit the sources supplied to a query by providing the Source Id or the External Id
of each source that you wish to include in the filtered result set.

12.2.1 By External Id

The ExternalIdFilter includes those sources whose external Ids are listed in a %List structure. Any element in this list that
is not a valid External Id, or is a duplicate external Id is silently passed over.

The following example filters sources by external Id. The external Id for Aviation.Event sources includes either the word
“Accident” or “Incident”; this filter include only the sources whose external Id includes the word “Incident”. It then lists
the details of the filtered sources:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineExtIdFilter
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,100)
 SET i=1
 SET extlist=$LB("")
 WHILE $DATA(result(i)) {
 SET extId = $LISTGET(result(i),2)
 IF $PIECE(extId,":",3)="Incident" {
 SET extlist=extlist_$LB(extId) }
 SET i=i+1
 }
 SET filt=##class(%iKnow.Filters.ExternalIdFilter).%New(domId,extlist)
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numSrcD," sources",!
ApplyExtIdFilter
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt)
 WRITE "The Id filter includes ",numSrcFD," sources:",!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,100,filt)

104 Using InterSystems Natural Language Processing (NLP)

Filtering Sources

 SET j=1
 WHILE $DATA(result(j)) {
 SET intId = $LISTGET(result(j),1)
 SET extId = $LISTGET(result(j),2)
 WRITE intId," ",extId,!
 SET j=j+1
 }
 WRITE "End of list"

12.2.2 By Source Id

The SourceIdFilter includes those sources whose source Ids are listed in a %List structure. Source Ids are integers. They
can be listed in any order. Any element in this list that is not a valid source Id, or is a duplicate source Id is silently passed
over.

The following example takes SQL records as sources and filters in several sources by Source Id. Source Ids in this data set
are numbered 1 through 100. The SourceIdFilter specifies five source Ids for inclusion, but only three of these source Ids
correspond to records in the table. Therefore, the total filtered source count is 3:

DefineAFilter
 SET srclist=$LB(10,14,74,110,2799)
 SET filt=##class(%iKnow.Filters.SourceIdFilter).%New(domId,srclist)
SourceCounts
 SET numsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numsrc," sources",!
 SET numfsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt)
 WRITE "Source count after source Id filtering: ",numfsrc

The iKnow.Filters.Filter class includes the %iKnow.Filters.SourceIdRangeFilter subclass. The following example filters a
range of sources by source Id. It returns sources with source Ids 5 through 10, inclusive:

 SET filt=##class(%iKnow.Filters.SourceIdRangeFilter).%New(domId,5,10)

12.3 Filtering a Random Selection of Sources
You can use the %iKnow.Filters.RandomFilter to select a random sample of your sources. A random sample allows you to
perform tests on a manageable subset of your sources. It also allows you to divide your sources (or a subset of them) into
“training” and “test” sets. You would use the “training” set to define NLP analytics (dictionary matches, source categories,
etc.), then would use the “test” set to determine how well these analytics apply to another set of data. In this way you can
avoid “overfitting” the analytics to a particular set of data.

You can specify the size of the random subset in two ways:

• As a percentage: You specify a percentage (as a fractional number between 0 and 1), and this filter returns the corre-
sponding percentage of the indexed sources in the specified domain (or filtered subset of the domain). For example, a
value of “ .5” means that 50% of the sources in the domain will be included in the filtered result. Halves are rounded
up, so 50% of 5 sources is 3 sources. You specify 100% as “ .999” with the appropriate number of fractional digits.
This filter selects the requisite number of sources randomly.

• As an integer: You specify an integer, and this filter returns that number of indexed sources in the specified domain
(or filtered subset of the domain). For example, a value of “7” means that 7 of the sources in the domain will be
included in the filtered result. This filter selects the specified number of sources randomly.

The following example randomly selects 33% of 50 sources, returning 17 sources. You can run this example repeatedly to
demonstrate that different sources are randomly sampled:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }

Using InterSystems Natural Language Processing (NLP) 105

Filtering a Random Selection of Sources

 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineAFilter
 SET filt=##class(%iKnow.Filters.RandomFilter).%New(domId,.33)
SampledSourceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numSrcD," sources",!
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt)
 WRITE "Of these ",numSrcD," sources ",numSrcFD," were sampled:",!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,20,filt)
 SET i=1
 WHILE $DATA(result(i)) {
 SET intId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 WRITE "sample #",i," is source ",intId," ",extId,!
 SET i=i+1 }
 WRITE "End of list"

The following example filters the sources in the domain by source Id, returning 11 sources. It then supplies this source Id
filter when defining a random filter. Thus, the random filter returns 3 of these source-Id-filtered sources. You can run this
example repeatedly to demonstrate that different sources are randomly sampled:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineSourceIdFilter
 SET srclist=$LB(1,3,5,7,9,11,13,15,17,21,23)

106 Using InterSystems Natural Language Processing (NLP)

Filtering Sources

 SET idfilt=##class(%iKnow.Filters.SourceIdFilter).%New(domId,srclist)
SourceCounts
 SET numsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numsrc," sources",!
 SET numfsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,idfilt)
 WRITE "Source count after source Id filtering: ",numfsrc,!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,20,idfilt)
 SET i=1
 WHILE $DATA(result(i)) {
 SET intId = $LISTGET(result(i),1)
 WRITE intId," "
 SET i=i+1 }
 WRITE !,"End of list",!
DefineRandomFilter
 SET rfilt=##class(%iKnow.Filters.RandomFilter).%New(domId,3,idfilt)
RandomSample
 SET numrsrc=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,rfilt)
 WRITE "From ",numfsrc," sources ",numrsrc," are randomly sampled:",!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,20,rfilt)
 SET j=1
 WHILE $DATA(result(j)) {
 SET intId = $LISTGET(result(j),1)
 WRITE intId," "
 SET j=j+1 }
 WRITE !,"End of list",!

12.4 Filtering by Number of Sentences
NLP divides a source text into sentences. The following example filters out sources that contain less than 75 sentences. It
returns the total number of sources, then uses the filter to return the total number of sources containing 75 or more sentences,
then uses the filter again to return the number of sentences in each of these sources:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineAFilter
 SET filt=##class(%iKnow.Filters.SentenceCountFilter).%New(domId)
 SET nsent=75
 DO filt.MinSentenceCountSet(nsent)
SourceSentenceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt)
 WRITE "Of these ",numSrcD," sources ",numSrcFD," contain ",nsent," or more sentences:",!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,50,filt)
 SET i=1
 WHILE $DATA(result(i)) {

Using InterSystems Natural Language Processing (NLP) 107

Filtering by Number of Sentences

 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 SET intId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 WRITE "source ",intId," ",extId
 WRITE " has ",numSentS," sentences",!
 SET i=i+1 }
 WRITE i-1," sources listed"

To filter using both minimum and maximum number of sentences, invoke both instance methods. The following filter
selects those sources containing between 10 and 25 sentences (inclusive):

MinMaxFilter
 SET min=10
 SET filt=##class(%iKnow.Filters.SentenceCountFilter).%New(domId)
 DO filt.MinSentenceCountSet(min)
 DO filt.MaxSentenceCountSet(min+15)

12.5 Filtering by Entity Match
The following entity filters are provided:

• ContainsEntityFilter: filters sources using a specified list of entities, at least one of which must appear in the source.
Optionally, ContainsEntityFilter can also filter sources by entities similar to the listed entities.

• ContainsRelatedEntitiesFilter: filters sources using a specified list of entities, two or more of which must be related
entities, meaning that they must appear in either the same path (the filter default) or the same CRC. Optionally, Con-
tainsRelatedEntitiesFilter can also filter sources by related entities similar to the listed entities.

• DictionaryMatchFilter: filters sources using one or more dictionaries containing lists of entities; by default, at least
one of these entities must appear in the source. Optionally, a specified minimum number of these entity matches must
occur for a source to be selected. Dictionary matching also supports standardized-form matching, if the $$$IKPMAT-
STANDARDIZEDFORM domain parameter is specified for the current domain.

12.5.1 Filtering by Dictionary Match

The %iKnow.Filters.DictionaryMatchFilter class allows you to select sources based on the contents of one or more user-defined
dictionaries. NLP also supports filtering by matching to a list of dictionary terms (%iKnow.Filters.DictionaryTermMatchFilter)
or to a list of dictionary items (%iKnow.Filters.DictionaryItemMatchFilter).

In the following simple example, the second filter parameter specifies that only one dictionary is applied; multiple dictio-
naries can be specified as elements of a %List. The third parameter is set to the default of 1, which means a single match
of any dictionary item selects the source for inclusion. You might wish to set this higher to avoid selecting sources where
a single dictionary match may be coincidental rather than significant, due to either a large number of items in the dictionary
and/or querying sources that contain a large amount of text. The fourth parameter takes the default (-1), which puts no
maximum limit on number of matches. If the max parameter is smaller than the min parameter, all sources are selected by
the filter, regardless of dictionary matches. The fifth parameter also takes its default: matching based on count of matches,
not match score. The sixth parameter is the ensureMatched flag; here ensureMatched=2, so that instantiating the filter
generates static match results which are then used each time the filter in invoked. This is the preferred usage. You would
need to set ensureMatched to 1 if a dictionary is modified after the filter is instantiated; ensureMatched=1 takes into account
changing dictionary contents by matching before every invocation of the filter. However, use of ensureMatched=1 can
result is significantly slower performance.

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }

108 Using InterSystems Natural Language Processing (NLP)

Filtering Sources

DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
CreateDictionary
 SET dictname="EngineTerms"
 SET dictdesc="A dictionary of aviation engine terms"
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname,dictdesc)
 IF dictId=-1 {WRITE "Dictionary ",dictname," already exists",!
 GOTO ResetForNextTime }
 ELSE {WRITE "created dictionary ",dictId,!}
PopulateDictionaryItem1
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(domId,dictId,
 "engine parts",domId_dictId_1)
 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "piston")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "cylinder")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "crankshaft")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "camshaft")
DefineAFilter
 SET filt=##class(%iKnow.Filters.DictionaryMatchFilter).%New(domId,$LB(dictId),1,,,2)
SourceCountQuery
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numSrcD," sources",!
SourcesFilteredByDictionaryMatch
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt)
 WRITE "Of these ",numSrcD,", ",numSrcFD," match the ",dictname," dictionary:",!!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,50,filt)
 SET i=1
 WHILE $DATA(result(i)) {
 SET intId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 WRITE "dictionary matches ",intId," ",extId,!
 SET i=i+1 }
 WRITE !,i-1," sources included by dictionary match",!
ResetForNextTime
 IF dictId = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname)}
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat {WRITE "deleted dictionary ",dictId,! }
 ELSE { WRITE "DropDictionary error ",$System.Status.DisplayError(stat) }

12.6 Filtering by Indexing Date Metadata
Every NLP source is assigned the DateIndexed metadata field. The value of this field is the date and time that a source was
indexed by NLP, in Coordinated Universal Time format (UTC) represented in $HOROLOG format. This is the same as
the $ZTIMESTAMP time, except that DateIndexed does not include fractional seconds.

You can create a filter using DateIndexed to include or exclude sources based on when NLP loaded the source. You can
filter using a specific date and time, or filter for a specific date, which encompass all time values within that date. You can
use BETWEEN logic to filter for a range of dates.

The following example filters for sources loaded today:

Using InterSystems Natural Language Processing (NLP) 109

Filtering by Indexing Date Metadata

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineAFilter
 SET tday = $PIECE($ZTIMESTAMP,",",1)
 SET filt=##class(%iKnow.Filters.SimpleMetadataFilter).%New(domId,"DateIndexed","=",tday)
DateIndexedValue
 WRITE "Today is ",$PIECE($ZTIMESTAMP,",",1),!
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,50)
 SET i=1
 WHILE $DATA(result(i)) {
 SET srcId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET idate = ##class(%iKnow.Queries.MetadataAPI).GetValue(domId,"DateIndexed",extId)
 WRITE "Source ",srcId," was indexed ",idate,!
 SET i=i+1 }
SourceSentenceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numSrcD," sources",!
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt)
 WRITE "Of these sources ",numSrcFD," were indexed today"

12.7 Filtering by User-defined Metadata
In NLP, data is the contents of a source that NLP processes and indexes. In NLP, metadata can be any data associated with
a source that is not NLP indexed data. You use NLP metadata to identify NLP data. A metadata filter uses the value of a
metadata field to determine which sources to supply to a query.

Note: The NLP definition of “metadata” describes how data is used, not the intrinsic nature of the data. This concept
differs somewhat from the way this word is used elsewhere in InterSystems IRIS Data Platform™ software.

NLP provides a default metadata management system that is independent of the query APIs. The %iKnow.Queries.MetadataAPI

class and accompanying %iKnow.Filters.SimpleMetadataFilter provide implementations for basic metadata filtering. If you
wish to implement a custom Metadata API, you should implement (at least) the %iKnow.Queries.MetadataI interface and
register your class as the "MetadataAPI" domain parameter: DO
domain.SetParameter("MetadataAPI","Your.Metadata.Class"). The example that follows uses the
%iKnow.Filters.SimpleMetadataFilter class.

In InterSystems SQL, each record of an SQL table constitutes an NLP source. Through the ProcessList() method (for small
numbers of records) or AddListToBatch() method (for large numbers of records), you define the Lister parameters:

• You define the RowID field as a component of the NLP external Id. NLP also generates a source Id for each row as a
unique integer; this NLP source Id is completely independent of the RowId or other SQL identifier values.

110 Using InterSystems Natural Language Processing (NLP)

Filtering Sources

• You define a field (or fields) that contain a string of text as a data field to be indexed as NLP data.

• You define a field (or fields) as an NLP metadata field. NLP can use the values of this metadata field to select sources
for an NLP query.

Note that it is possible to specify the same field as both one of the data fields and as a metadata field. You can optionally
also define metakey fields that correspond to the metadata fields.

This is shown in the following example. The Aviation.Event table contains various fields in addition to the NarrativeFull
text field. In this example, InjuriesTotal is used as a metadata field. This metadata field is used in three filters: two equality
filters, which filter for InjuriesTotal>2 and InjuriesTotal=3, and a BETWEEN filter that filters for InjuriesTotal between
3 and 5 (inclusive). This example uses the DropData(1) method, because DropData() with no argument does not delete
metadata. Also note that the AddField() method must be invoked before listing and loading the data.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData(1)
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 100 ID AS UniqueVal,Type,NarrativeFull,InjuriesTotal,InjuriesTotalFatal FROM
 Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
 SET metaflds=$LB("InjuriesTotal","InjuriesTotalFatal")
AddMetaFields
 SET val=##class(%iKnow.Queries.MetadataAPI).AddField(domId,"InjuriesTotal",
 $LB("=","<",">","BETWEEN"),$$$MDDTNUMBER)
 SET val=##class(%iKnow.Queries.MetadataAPI).AddField(domId,"InjuriesTotalFatal",
 $LB("=","<",">","BETWEEN"),$$$MDDTNUMBER)
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds,metaflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
CountSources
 SET numsrc=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
ApplyFilter
 SET filt2=##class(%iKnow.Filters.SimpleMetadataFilter).%New(domId,"InjuriesTotal",
 ">",2)
 SET numSrcF2=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt2)
 WRITE "Of these ",numsrc," sources ",numSrcF2," had three or more injuries",!
 SET filt3=##class(%iKnow.Filters.SimpleMetadataFilter).%New(domId,"InjuriesTotal",
 "=",3)
 SET numSrcF3=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filt3)
 WRITE "Of these ",numsrc," sources ",numSrcF3," had three injuries",!
 SET filtb=##class(%iKnow.Filters.SimpleMetadataFilter).%New(domId,"InjuriesTotal",
 "BETWEEN","3;5")
 SET numSrcFb=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,filtb)
 WRITE "Of these ",numsrc," sources ",numSrcFb," had between 3 and 5 injuries",!

12.7.1 Metadata Filter Operators

You assign to each filter one or more equality operators. If the filter is matching against a string value, use the “=” equality
operator. If the filter is matching against a numeric value, you can use one or more of the following operators: “=”, “<”,
“<=”, “>”, “>=”. Equality operators are always specified as quoted string elements in a list structure. Equality operators
are matched against a single value. This is shown in the following example:

Using InterSystems Natural Language Processing (NLP) 111

Filtering by User-defined Metadata

 SET filt=##class(%iKnow.Filters.SimpleMetadataFilter).%New(domId,metafldname,"=",today)

The BETWEEN operator is matched against a parameter string containing a pair of values that are separated by
$$$MDVALSEPARATOR (the semicolon character). This is shown in the following example:

 SET filt=##class(%iKnow.Filters.SimpleMetadataFilter).%New(domId,metafldname,
 "BETWEEN","yesterday;tomorrow")

12.8 Filtering by SQL Query
The %iKnow.Filters.SqlFilter class allows you to select SQL sources based on the results of an SQL query. This query can
select on any of the following fields:

• SourceId: the (internal) Source ID of the sources to be selected.

• ExternalId: the full External ID of the sources to be selected.

• IdField and GroupField: the two columns used together as identifiers when adding the sources to the domain: Local
Reference (IdField) and Group Name (GroupField). See also %iKnow.Source.SQL.Lister.

Note that these result column names are case-sensitive.

For example, the following filter selects for the SourceId of the 6th source retrieved (in this case SourceId 45):

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
 IF ##class(%iKnow.Configuration).Exists("myconfig") {
 SET cfg=##class(%iKnow.Configuration).Open("myconfig") }
 ELSE { SET cfg=##class(%iKnow.Configuration).%New("myconfig",0,$LISTBUILD("en"),"",1)
 DO cfg.%Save() }
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseListerAndLoader
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,50)
FilterSources
 SET filter=##class(%iKnow.Filters.SqlFilter).%New(domId,
 "SELECT '"_$LIST(result(6),1)_"' AS SourceId")
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.fresult,domId,0,0,filter)
 WRITE !,"Filtered results:",!
 SET j=1
 WHILE $DATA(fresult(j)) {
 WRITE $LISTTOSTRING(fresult(j)),!
 SET j=j+1 }

The following filter selects sources by ExternalId:

112 Using InterSystems Natural Language Processing (NLP)

Filtering Sources

 SET filter=##class(%iKnow.Filters.SqlFilter).%New(domId,
 "SELECT '"_$LIST(result(1),2)_"' AS ExternalId")
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(domId,0,0,filter)
 ZWRITE result

12.9 Filter Modes
The FilterMode argument specifies what statistical reprocessing should be performed after applying a filter. If no reprocessing
is performed, the filter is applied but the frequency and spread statistics are the values calculated for the item before filtering
and the sort sequence remains unchanged. The following are the available filter modes:

Re-sort
Results?

Recalculate
Spread?

Recalculate
Frequency?

Filter?Integer
code

FilterMode

NONONOYES1$$$FILTERONLY

NONOYESYES3$$$FILTERFREQ

NOYESNOYES5$$$FILTERSPREAD

NOYESYESYES7$$$FILTERALL

YESNOYESYES11$$$FILTERFREQANDSORT

YESYESNOYES13$$$FILTERSPREADANDSORT

YESYESYESYES15$$$FILTERALLANDSORT

The default is $$$FILTERONLY.

Refer to Constants in the “NLP Implementation” chapter for use of $$$ macros.

12.10 Using GroupFilter to Combine Multiple Filters
NLP supplies a GroupFilter class that allows you to supply logic to combine the results of other filters. You must first create
a GroupFilter instance that provides a defined logic, and then use the AddSubFilter() method to assign it one or more sub-
filter objects that are combined according to the GroupFilter logic. In this way you can combine multiple existing filters to
select which sources are supplied to an NLP query.

The simplest GroupFilter logic returns the inverse of a single filter. In the following example, the RandFilt selects 33% of
the sources. The GroupFilter defines AND logic with a Negated boolean operator. When applied to a single filter, this logic
returns all of the sources not selected by the filter:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"

Using InterSystems Natural Language Processing (NLP) 113

Filter Modes

 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineARandomFilter
 SET randfilt=##class(%iKnow.Filters.RandomFilter).%New(domId,.33)
SampledSourceQueries
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numSrcD," sources",!
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,randfilt)
 WRITE "From ",numSrcD," sources randfilt sampled ",numSrcFD,!
GroupFilter
 SET grpfilt=##class(%iKnow.Filters.GroupFilter).%New(domId,"AND",1)
 DO grpfilt.AddSubFilter(randfilt)
 SET numSrcGrp=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,grpfilt)
 WRITE "From ",numSrcD," sources grpfilt sampled ",numSrcGrp

The following example uses a GroupFilter to combine the results of two other filters (in this case, both are random filters).
Because the GroupFilter logic is AND, and the Negated=0, the GroupFilter results are those sources that are found in both
RandomFilter sets. Because the results of these filters are random, the number of GroupFilter AND results will likely differ
each time this example is executed:

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO SetEnvironment }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO SetEnvironment }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
SetEnvironment
 SET domId=domoref.Id
QueryBuild
 SET myquery="SELECT TOP 50 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DefineTwoRandomFilters
 SET randfilt1=##class(%iKnow.Filters.RandomFilter).%New(domId,.33)
 SET randfilt2=##class(%iKnow.Filters.RandomFilter).%New(domId,.25)
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The ",dname," domain contains ",numSrcD," sources",!
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,randfilt1)
 WRITE "From ",numSrcD," sources randfilt1 sampled ",numSrcFD,!
 SET numSrcFD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,randfilt2)
 WRITE "From ",numSrcD," sources randfilt2 sampled ",numSrcFD,!
GroupFilter
 SET grpfilt=##class(%iKnow.Filters.GroupFilter).%New(domId,"AND",0)
 DO grpfilt.AddSubFilter(randfilt1)
 DO grpfilt.AddSubFilter(randfilt2)
 SET numSrcGrp=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,grpfilt)
 WRITE "From ",numSrcD," sources grpfilt sampled ",numSrcGrp

You assign each GroupFilter either the AND ($$$GROUPFILTERAND) or the OR ($$$GROUPFILTEROR) logical
operator. Therefore, to create a compound filter involving both AND and OR logic, you must create a GroupFilter with
AND logic and a GroupFilter with OR logic.

The following example corresponds to the Boolean expression "(filter1 AND !(filter2 OR filter3))":

114 Using InterSystems Natural Language Processing (NLP)

Filtering Sources

#Include %IKPublic
 SET domoref=##class(%iKnow.Domain).%New("MyDomain")
 DO domoref.%Save()
 SET domId=domoref.Id
 /* . . . */
Create3Filters
 /* . . . */
GroupFilters
 SET group1=##class(%iKnow.Filters.GroupFilter).%New(domId,$$$GROUPFILTERAND,0)
 SET group2=##class(iKnow.Filters.GroupFilter).%New(domId,$$$GROUPFILTEROR,1)
 DO group1.AddSubFilter(filter1)
 DO group2.AddSubFilter(filter2)
 DO group2.AddSubFilter(filter3)
 DO group1.AddSubFilter(group2)

Using InterSystems Natural Language Processing (NLP) 115

Using GroupFilter to Combine Multiple Filters

13
Text Categorization

Text categorization allows you to assign category labels to source texts, based on the contents of those texts.

For example, suppose you anticipate having a large number of Aviation Event texts that you will wish to categorize by
AircraftCategory label: “airplane”, “helicopter”, “glider”, and so forth. By determining what NLP entities in the contents
of these le texts correspond strongly to a category label, you can create a text classification model that you can apply to
future Aviation Event texts that do not yet have an assigned category.

Defining appropriate categories is an essential preliminary to text categorization:

• Each source can only be assigned one category. A source is assigned a category; a category is not assigned sources.
Every source must correspond unambiguously to one of the defined categories.

• The number of category values (labels) is fixed. Because you cannot add more category labels to a text classification
model, all possible future sources should be assignable to one of the initial category labels.

• The number of category values (labels) should be small. Categories should be designed so that roughly equal numbers
of sources will be assigned to each category value.

13.1 Text Categorization Implementation
NLP supports two approaches to building a text classification model:

• Analytic: analyze a set of existing texts that have category labels to determine which entities within the texts are the
strongest indicators of membership in each of these categories. This requires you to have a representative sample of
texts that have already been categorized.

• Rules-based: perform NLP entity queries on a set of existing texts; for example, determine the top TFIDF or BM25
entities. Define categories using %AddCategory(). Develop rules (boolean tests) about the presence of high-value
entities within the texts, associating specific categories with specific rules. Applying these rules will collectively
determine the membership of a text in a category: highest number of successful boolean tests determines the category.
This does not require you to have a set of texts that have already been categorized.

The descriptions that follow apply to the analytic approach to building a text classification model. Note that an analytic
approach can use any analytic method, such as Naive Bayes statistical analysis or user-defined decision rules.

To perform text categorization, you must first create a Text Classifier (a text classification model). This model is based on
a training set of source texts that have already been assigned category labels. By analyzing the contents of these training
set texts, NLP determines which NLP entities correspond strongly to which category. You build and test a Text Classifier

Using InterSystems Natural Language Processing (NLP) 117

that statistically associates these NLP text entities with categories. Once you have an accurate Text Classifier, you can then
use it on new source texts to assign category labels to them.

Typically, categories are specified in a metadata field. Each text is associated with a single category label. The number of
different category labels should be low relative to the number of source texts, with each category well represented by a
number of texts in your training set.

NLP text categorization starts from NLP entities (not just words) within the source texts. It can use in its analysis not only
the frequency of entities within the source texts, but the context of the entity, such as whether the entity is negated, and the
entity’s appearance in larger text units such as CRCs and sentences. By using the full range of NLP semantic analysis, text
categorization can provide precise and valuable categorization of texts.

Analytic text categorization consists of three activities:

• Build a Text Classifier. This requires a set of texts (the training set), each of which has been assigned a category label.
In this step you select a set of terms (entities) that are found in these texts and may serve to differentiate them. You
also select a ClassificationMethod (algorithm) that determines how to correlate the appearance of these terms in the
training set texts with the associated category label.

• Test the Text Classifier to determine its fit. This requires another set of texts (the test set), each of which has been
assigned a category label. Based on this test information, you can revisit the build step, adding or removing terms, and
thus iteratively improving the accuracy of the text classifier model.

• Use the Text Classifier to categorize texts that do not have an assigned category.

13.1.1 Implementation Interfaces

You can implement a text classification model in either of two ways:

• Using User Interface (UI) tools in the InterSystems IRIS Data Platform™ Management Portal. From the Management
Portal Analytics option, select the Text Analytics option, then select Text Categorization. This displays two options:
Model builder and Model tester.

• Programmatically, using the %iKnow.Classification package: %iKnow.Classification.Builder,
%iKnow.Classification.Optimizer, and %iKnow.Classification.Classifier.

13.2 Establishing a Training Set and a Test Set
Regardless of which interface you use, before building a Text Classifier you must load into a domain a group of data sources
with associated category labels. These sources are used to train and test the Text Classifier.

Note: It is possible to create a rules-based Text Classifier that does not require a pre-existing group of sources with
assigned category labels. However, in the examples in this chapter the use of training set and test set sources is
required.

You need to be able to divide these loaded sources into (at least) two groups of sources. A training set of sources, and a
test set of sources. You use the training set to establish what entities are good indicators for particular categories. You use
the test set (or multiple test sets) to determine if this predictive assignment of category labels makes sense with sources
other than the training set. This prevents “overfitting” the terms to a particular group of sources. It is desirable that the
training set be the larger of the two sets, containing roughly 70% of the sources, with the remaining 30% as the test set.

One common method for dividing SQL sources into a training set and a test set is to use a field of the source as a metadata
field. You supply less than (<) and greater than (>) operators to AddField() so that you can perform a boolean test on the

118 Using InterSystems Natural Language Processing (NLP)

Text Categorization

values of that field, dividing the sources into two groups. This division of sources should be as random as possible; using
the SQL RowID as the metadata field usually achieves this goal.

The Management Portal Text Categorization Model builder is designed to use the values of a metadata field to divide a group
of sources into a training set and a test set.

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following example establishes the SQL RowID as a metadata field that can be used to divide the loaded sources into
a training set and a test set:

 SET myquery="SELECT ID,SkyConditionCeiling,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="ID"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull") // text data field
 SET metaflds=$LB("SkyConditionCeiling","ID")
 DO ##class(%iKnow.Queries.MetadataAPI).AddField(domId,"SkyConditionCeiling") // categories field
 DO ##class(%iKnow.Queries.MetadataAPI).AddField(domId,"ID",$LB("=","<=",">")) // set divider field

You can also divide loaded sources of any type into groups using NLP source ID values. You can use the
%iKnow.Filters.SourceIdFilter class to divide a group of sources into a training set and a test set. The following example
uses modulo division on the source IDs to place two-thirds of the loaded sources in tTrainingSet, and the remaining sources
in tTestSet:

FilterBySrcId
 SET numsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,numsrc)
 SET j=1
 SET filtlist=""
 WHILE $DATA(result(j)) {
 SET intId = $LISTGET(result(j),1)
 IF intId#3 > 0 {SET filtlist=filtlist_","_intId }
 SET j=j+1
 }
 SET tTrainingSet=##class(%iKnow.Filters.SourceIdFilter).%New(domId,filtlist)
 SET tTestSet = ##class(%iKnow.Filters.GroupFilter).%New(domId, "AND", 1) // NOT filter
 DO tTestSet.AddSubFilter(tTrainingSet)
DisplaySourceCounts
 SET trainsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,tTrainingSet)
 WRITE "The training set contains ",trainsrc," sources",!
 SET testsrc = ##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId,tTestSet)
 WRITE "The test set contains ",testsrc," sources",!

Note that %iKnow.Filters.RandomFilter is another way to divide a group of sources. However, each time you invoke
%iKnow.Filters.RandomFilter the resulting training set consists of different sources.

13.3 Building a Text Classifier Programmatically
To build a text classifier, you use a %iKnow.Classification.Builder object. The description that follows applies to the analytic
approach to building a Text Classifier.

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

13.3.1 Create a Text Classifier

To create a Text Classifier, you must first instantiate a Builder object, supplying it the domain name and the oref for the
training set. You then configure the ClassificationMethod algorithm that the Text Classifier will use. The easiest-to-use
algorithm is based on the Naive Bayes theorem. Naive Bayes combines individual entities’ probabilities for each category
in the training set to calculate the overall probability of a new text belonging to that category:

 SET tBuilder = ##class(%iKnow.Classification.IKnowBuilder).%New("mydomian",tTrainingSet)
 SET tBuilder.ClassificationMethod="naiveBayes"

Using InterSystems Natural Language Processing (NLP) 119

Building a Text Classifier Programmatically

You then specify the categories that the Text Classifier will use. If your sources supply the category labels as a metadata
field, you can make a single call to the %LoadMetadataCategories() method. You do not need to specify either the category
values or even the number of categories. In the following example, the AircraftCategory metadata field of Aviation.Aircraft
is used as a category field assigning each record to a category: “Airplane”, “Helicopter”, “Glider”, “Balloon”, etc. The
following example shows the use of this metadata field to specify categories:

 SET myquery="SELECT TOP 100 E.ID,A.AircraftCategory,E.Type,E.NarrativeFull "_
 "FROM Aviation.Aircraft AS A,Aviation.Event AS E "_
 "WHERE A.Event=E.ID"
 SET idfld="ID"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
 SET metaflds=$LB("AircraftCategory")
 SET mstat=##class(%iKnow.Queries.MetadataAPI).AddField(domId,"AircraftCategory")
 IF mstat=1 {
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds,metaflds) }
 .
 .
 .
 WRITE tBuilder.%LoadMetadataCategories("AircraftCategory")

Note that this is a useful (but not an ideal) category field, because a large percentage of the records (>80%) are assigned
to “Airplane”, whereas most other labels have only a handful of records assigned to them. Ideally, each category label
should correspond to roughly equivalent numbers of texts. As long as each category represents at least 10% of the training
set, most classification methods should work fine. A category label must be associated with more than one source text; it
may, therefore, be useful to combine potential category values with very low numbers of texts into a catch-all category,
with a category label such as “miscellaneous”.

13.3.2 Populate the Terms Dictionary

Once you have established categories, you select terms which the Text Classifier will locate in each text and use to determine
what category label to assign to it. You can either assign terms individually, or use %PopulateTerms() to add multiple
terms found in the texts according to some metric.

%PopulateTerms() allows you to automatically specify a number of terms based on their frequency in the texts. By default
the terms are selected using the Naive Bayes algorithm (most differentiating per-category probability):

 SET stat=tBuilder.%PopulateTerms(50)

Implementations for metrics other than Naive Bayes can be provided by subclasses. You can use %PopulateTerms() to
specify the top X number of terms from the training set documents using the BM25 or TFIDF algorithm.

You will typically use a combination of %PopulateTerms() and %AddEntity() methods to create the desired set of terms.

You specify individual terms to include in the Text Classifier, using the %AddEntity(), %AddCRC(), and
%AddCooccurrence() methods:

%AddEntity() can add an entity as a single term, or add multiple entities as a single composite term by supplying the
entities as an array or list. NLP aggregates the counts and scores of these entities, allowing you to capture synonyms or
group variants of a term.

 DO tBuilder.%AddEntity("hang glider")
 DO tBuilder.%AddEntity("fixed wing aircraft","explicit","partialCount")
 SET tData(1)="helicopter",tData(2)="helicopters",tData(3)="twin-rotor helicopter"
 DO tBuilder.%AddEntity(.tData)

%AddEntity() can optionally specify how to handle negation and how to handle partial matches, as shown in the second
%AddEntity() in the previous example.

%AddCRC() can add a CRC as a single term. Because text classification depends on the frequency of matches amongst
the source texts, it is unusual for a CRC to be common enough to be useful as a Text Classifier term. However, if there is
a very specific sequence of entities (a CRC) that is a strong indicator for a particular category, adding CRCs can make
sense.

120 Using InterSystems Natural Language Processing (NLP)

Text Categorization

%AddCooccurrence() allows you to add as a single term the appearance of two specified entities in the same sentence
(in any order). You can optionally specify how to handle negation and how to handle partial matches:

 WRITE tBuilder.%AddCooccurrence($LISTBUILD("landed","helicopter pad"))

Note that these terms are not associated with a particular category. The Builder will automatically calculate how well each
text containing these terms correlates to each category.

13.3.3 Run the Classification Optimizer

When developing a Text Classifier, you do not have to add or remove terms by trial and error. You can use the methods
of the %iKnow.Classification.Optimizer class to include those entities that will have the largest impact on predictive accuracy.

1. Create an Optimizer object and use its Builder property to specify the %iKnow.Classification.Builder object to associate
with it. Optionally, set the ScoreMetric property to specify how you want to measure performance (the default is
MacroFMeasure).

 SET tOpt = ##class(%iKnow.Classification.Optimizer).%New(domId,tBuilder)
 SET tOpt.ScoreMetric="MicroPrecision"

2. Include a large number of candidate terms, either from an array (using LoadTermsArray()) or using an SQL query
(using LoadTermsSQL().

3. Run the Optimize() method. This will automatically add terms and remove terms based on their ScoreMetric values.
Optimize() performs the specified number of rounds of adding potentially high-value terms, calculating their impact,
then removing low-value terms.

13.3.4 Generate the Text Classifier

Once you have identified categories and terms, you generate a Text Classifier class. This text classifier class contains code
to identify the most appropriate category label based on the terms found in the source. You specify a class name for your
Text Classifier:

 WRITE tBuilder.%CreateClassifierClass("User.MyClassifier")

The operation performed by this method depends on the ClassificationMethod you specified. For Naive Bayes, the Builder
first creates a matrix containing the match score/count for each term in each source text for which we also know the actual
category. This builds a model of how well the specified terms are predictive of the assigned category.

In the example used here, the categories were taken from the AircraftCategory metadata field values. Each term is correlated
with each source to determine how predictive that term is in determining the category. For example, the appearance of the
term “helipad” is strongly predictive of a source with AircraftCategory=helicopter. The term “engine” is indicative of
several categories — airplane or helicopter, but not glider or balloon — and is thus weakly predictive of a single category.
However, including a term of this type may be helpful for eliminating some categories. The term “passenger” is only weakly
predictive of any category, and is therefore probably not a good term for your text classifier model. You can use
%AddEntity() and %RemoveTerm() to fit your dictionary of terms based on their contribution to the determination of a
category.

13.4 Testing a Text Classifier
Your text classifier model has been fitted to its training set of documents so that the set of terms in its term dictionary
accurately determine the category. You now need to test the model on a separate set of documents to determine if it is

Using InterSystems Natural Language Processing (NLP) 121

Testing a Text Classifier

accurate for documents other than those in the training set. For this, you use the test set of documents. Like the training set,
these documents also have a defined category label.

You can use the %TestClassifier() method to return a single accuracy value. The accuracy is the number of right predictions
made divided by the total records tested. The higher the accuracy against the test set documents, the better the model.

 WRITE tBuilder.%TestClassifier(tTestSet,,.accuracy),!
 WRITE "model accuracy: ",$FNUMBER(100*accuracy,"L",2)," percent"

It is likely that the predictive accuracy for all categories is not the same. You should therefore test the accuracy for individual
categories.

The following example returns both the overall accuracy and the individual incorrect prediction results:

TestClassifier
 WRITE tBuilder.%TestClassifier(tTestSet,.testresult,.accuracy),!
 WRITE "model accuracy: ",$FNUMBER(accuracy*100,"L",2)," percent",!
 SET n=1
 SET wrongs=0
 WHILE $DATA(testresult(n)) {
 IF $LISTGET(testresult(n),2) '= $LISTGET(testresult(n),3) {
 SET wrongcnt=wrongcnt+1
 WRITE "WRONG: ",$LISTGET(testresult(n),1)
 WRITE " actual ",$LISTGET(testresult(n),2)
 WRITE " pred. ",$LISTGET(testresult(n),3),! }
 SET n=n+1 }
 WRITE wrongcnt," out of ",n-1,!

Predictive accuracy for a category is calculated based on four possible outcomes of matching a prediction to a known category:

• True Positive (TP): predicted as Category X, actually in Category X.

• False Positive (FP): predicted as Category X, actually in some other category.

• False Negative (FN): predicted as some other category, actually in Category X.

• True Negative (TN): predicted as some other category, actually in some other category.

These counts are used to generate the following ratios:

Precision is the ratio of correct results to the number of results returned for a particular category: TP / (TP+FP). For
example, the term “helipad” would contribute to a high precision ratio for the category Helicopter; nearly all texts that
mention “helipad” are in the category Helicopter.

Recall is the ratio of correct results to the number of results that should have been returned for a particular category: TP /
(TP+FN). For example, the term “helipad” is not likely to improve the recall ratio for the category “Helicopter” because
only a few of these texts mention “helipad”.

The F-measure (F1) of the model for Category X combines the Precision and Recall values and derives the harmonic mean
value of the two. Note that an increase in Precision may cause a decrease in Recall, and vice versa. Which of the two you
wish to maximize depends on your use case. For example, in a medical screening application you may wish to accept more
False Positives to minimize the number of False Negatives.

Note: If a category value was not found in the training set, the Text Classifier cannot predict that category for a text in
the test set. In this case, both the True Positive (TP) and False Positive (FP) will be zero, and False Negative (FN)
with be the full count of texts with that category specified.

13.4.1 Using Test Results

If there is a significant discrepancy between the accuracy of the training set and the accuracy of the test set, the terms dic-
tionary has been “overfitted” to the training set. To correct this problem, go back to the Build process and revise the term
dictionary. You can generalize the term dictionary by replacing an individual term with a term array:

122 Using InterSystems Natural Language Processing (NLP)

Text Categorization

 SET stat=tBuilder.%RemoveTerm("Bell helicopter")
 SET tData(1)="Bell helicopter",tData(2)="Bell 206 helicopter",tData(3)="Bell 206A helicopter",
 tData(4)="Bell 206A-1 helicopter",tData(5)="Bell 206L helicopter",tData(6)="Bell 206L LongRanger"

 SET stat=tBuilder.%AddEntity(.tData)

You can also generalize the term dictionary by changing an individual term to allow for partial matches ("partialCount"),
rather than only an exact match.

13.5 Building a Text Classifier Using the UI
You can build a Text Classifier using the InterSystems IRIS Management Portal. From the Management Portal Analytics

option, select the Text Analytics option, then select Text Categorization. This displays two options: Model builder and Model

tester.

All NLP domains exist within a specific namespace. Therefore, you must specify which namespace you wish to use. A
namespace must be enabled for analytics before it can be used. Selecting an enabled namespace displays the Text Analytics

option.

Note: You cannot use the %SYS namespace for NLP operations. The Management Portal Analytics option is non-
functional (greyed out) while in the %SYS namespace. Therefore, you must specify which existing namespace
you wish to use by clicking the Switch option at the top of any Management Portal interface page.

In this interface, you can either open an existing Text Classifier or build a new one. To build a new Text Classifier, you
must already have a defined domain containing data sources. The data sources must contain a category field.

13.5.1 Define a Data Set for the UI

To create a new Text Classifier, you must have created a domain and populated it with data sources that can be used as the
training set and the test set. Commonly, data from these sources should specify the following:

• One or more data fields containing the text to be analyzed by the Text Classifier.

• A metadata field containing the categories used by the Text Classifier. The data sources must contain at least one source
for every possible category value.

• A metadata field containing values that can be used to divide the data sources into a training set and a test set. This
field should have no connection to the actual contents of the data, and thus enable a random division of the sources.
For example, the source Id number, or a date or time value. In many cases, you will need to specify less than (<) and
greater than (>) operators to enable the division of sources into sets.

The following is an example of data source field definitions:

 SET myquery="SELECT TOP 200 E.ID,A.AircraftCategory,E.Type,E.NarrativeFull "_
 "FROM Aviation.Aircraft AS A,Aviation.Event AS E "_
 "WHERE A.Event=E.ID"
 SET idfld="ID"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
 SET metaflds=$LB("AircraftCategory","ID")
 DO ##class(%iKnow.Queries.MetadataAPI).AddField(domId,"AircraftCategory")
 DO ##class(%iKnow.Queries.MetadataAPI).AddField(domId,"ID",$LB("=","<=",">"))

13.5.2 Build a Text Classifier

To create a new text classifier, select the New button. This displays the Create a new classifier window. Create a new Class

name for your Text Classifier. Select an NLP Domain from the drop-down list of existing domains. Select the Category

Using InterSystems Natural Language Processing (NLP) 123

Building a Text Classifier Using the UI

field containing the category labels from the drop-down list of metadata fields defined for the domain. For Training Set,
select a metadata field from the drop-down list, an operator from the drop-down list, and specify a value. For example:
EventDate <= 2004. For the Test Set, select the same metadata field, and a complementary operator and value. For
example: EventDate > 2004. Alternatively, you can specify the Training Set and Test Set using SQL with an SQL query.

For Populate terms select a method of deriving terms from the drop-down list, and specify the number of top terms to derive.
For example Top n terms by NB differentiation for Naive Bayes (NB). Then click Create.

This displays a screen with three panels:

The right panel displays the Model properties. Normally, you would not change these values. Clicking on the Data source
domain name allows you to change the Category field, Training Set, or Test Set specified in the previous step. If you click
the Gears icon in the button bar, you'll display some additional advanced controls.

The central panel (Selected terms) shows a tree view of the terms that you have already selected as part of the model. The
left panel (Add terms) allows you to add terms to the model.

13.5.2.1 Terms Selection

Here are the most common ways to add entities to a terms dictionary:

• Entities tab: type a substring in the box provided. All of the entities that contain that substring will be listed with their
frequency and spread counts.

• Top tab: select a metric (BM25 or TFIDF) from the drop-down list. The top entities according to that metric will be
listed with their calculated score.

You can use the check boxes to select individual entities as terms, or you can scroll to the bottom of the list and click select

all for the current page of listed entities. You can go on to additional pages, if desired. Once you have selected entities,
scroll back up to the top of the Add terms list and click the Add button. This adds the selected entities to the Selected terms

list in the central panel. (You may get an informational message if you have selected duplicate terms.)

13.5.2.2 Optional Advanced Term Selection

The Append button allows you to create composite terms. In a composite term, multiple similar entities all resolve to the
same single term. Defining composite terms helps to make the Text Classifier more robust and general, less “fitted” to
specific entities in the training set. You can also create a composite term in the Selected terms list by dragging and dropping
one term atop another.

By default, all multiword entities you select are added to the terms dictionary as an exact occurrence: all of the words in
the entity must appear in the specified order in a text to qualify as a match. However, you can instead specify individual
entities as partial match entities. When adding a multiword entity, click the Gears icon to display the Count drop-down
box. Select partial match count. Defining common multiword entities as partial match terms helps to make the Text Classifier
more robust and general, less “fitted” to specific entities in the training set.

You can use the CRCs tab or the Cooccurrences tab to add these entities to the terms dictionary. Type an entity in the box
provided, then press Enter. The top CRCs and Cooccurrences appear in the Add terms list in descending order. (A cooccurence
is the appearance of two Concept entities, in any order, in the same sentence.) Commonly, most CRCs and cooccurences
are too specific to add to a term dictionary. However, you may wish to add the most common CRCs and/or cooccurrences
to the term directory.

You can remove terms from the Selected terms list in the central panel; click on an individual term (or entity within a
composite term), then click the Remove button.

13.5.2.3 Save

When you have finalized the Model properties and list of Selected terms, click the Save button (or the Save as button). This
builds your Text Classifier.

124 Using InterSystems Natural Language Processing (NLP)

Text Categorization

13.5.3 Optimize the Text Classifier

Once you have saved a Text Classifier, you can use the Optimizer to automatically optimize the term dictionary. The
Optimizer takes a list of additional candidate terms, tests each term, and adds those terms with the highest impact on the
accuracy of the Text Classifier.

Click the Optimize button. This displays the Optimize term selection popup window. Select a Relevance metric (BM25,
TFIDF, or Dominance) from the drop-down list. Specify a number of candidate terms using that metric, and click Load.
The right panel lists the Candidate terms to test. Click Next.

This displays the Settings panel with default values. You can accept these defaults and click Start. This runs the Optimizer,
adding and removing terms. When the optimization process completes, you can close the Optimize term selection popup
window. Note that the Selected terms list in the central panel has changed. Click the Save button to save these additions to
your terms dictionary.

You can run the Optimizer several times with different settings. After each optimization you can test the Text Classifier,
as described in the following section.

13.5.4 Test the Text Classifier against a Test Set of Data

Click the Test button. This displays the Model tester in a new browser tab. The Model tester allows you to test your Text
Classifier against test data. After testing it, you can return to the Model builder browser tab and add or remove terms, either
manually using Add terms , or by running (or re-running) the Optimizer.

The Model tester provides two ways of testing your Text Classifier:

• Domain tab: the Domain, Category field, and Test filter fields should take their values from the Model builder. In the
Model tester click the Run button. This displays overall test results, and Detail test results for each category.

• SQL tab: you can specify an SQL query to supply the test data in the Data Source SQL section. Use the _Text and
_Category column aliases to identify the source text and the metadata category columns, as shown in the following
example:

SELECT E.ID,A.AircraftCategory AS _Category,E.Type,E.NarrativeFull AS _Text
FROM Aviation.Aircraft AS A,Aviation.Event AS E WHERE A.Event=E.ID

Then click Test. This compares the actual category value with the category determined by the Text Classifier. It displays
the overall test results, and details for each category.

13.5.5 Test the Text Classifier on Uncategorized Data

You can use the Text Classifier on a text string to test how it derives a category. Select the Test button. This displays the
Text input window. Specify a text string, then press Categorize!.

• The Text tab displays the text highlighted with the terms from the terms dictionary.

• The Categories tab displays score bars for each category, with green representing correct and brown representing
incorrect.

• The Trace info tab displays probability bars for each term found in the input text. By using the Weights for category
drop-down list you can determine the probability for each term for all categories (the default), or for individual categories.

Th

Using InterSystems Natural Language Processing (NLP) 125

Building a Text Classifier Using the UI

13.6 Using a Text Classifier
Once you have built an accurate text classifier, you will want to apply it to source texts that have not yet been assigned a
category label. Using methods of %iKnow.Classification.Classifier, your text classifier can be used to predict the category
of any unit of text.

To create a Text Classifier, you must first instantiate the subclass of %iKnow.Classification.Classifier that represents the Text
Classifier you wish to run. Once created, a text classifier is completely portable; you can use this text classifier class inde-
pendently of the domain that contains the training set and test set data.

• Use %Categorize() for NLP source texts. If a source text to be categorized has already been indexed in an NLP domain,
you can use %Categorize() to match against the categories. It returns a match score for each category, in descending
order by score.

 SET tClassifier = ##class(User.MyClassifier).%New("iKnow","MyDomain")
 WRITE tClassifier.%Categorize(.categories,srcId)
 ZWRITE categories

• Use %CategorizeText() for a text specified as a string. If a source text to be categorized is a string, you can use
%CategorizeText() to match an input string against the categories. It returns a match score for each category, in
descending order by score.

 SET tClassifier = ##class(User.MyClassifier).%New()
 WRITE tClassifier.%CategorizeText(.categories,inputstring)
 ZWRITE categories

ZWRITE categories returns match score data such as the following:

categories=4
categories(1)=$lb("AIRPLANE",.4314703807485703701)
categories(2)=$lb("HELICOPTER",.04128622469233822948)
categories(3)=$lb("GLIDER",.0228365968611826442)
categories(4)=$lb("GYROCRAFT",.005880588058805880587)

In SQL you can execute a Text Classifier against a text string using a method stored procedure, as follows:

SELECT User.MyClassifier_sys_CategorizeSQL('input string') AS CategoryLabel

This returns a category label.

The following Embedded SQL example uses the Sample.MyTC Text Classifier to determine a category label for the first
25 records in Aviation.Event:

 FOR i=1:1:25 {
 SET rec=i
 &sql(SELECT %ID,NarrativeFull INTO :id,:inputstring FROM Aviation.Event WHERE %ID=:rec)
 WRITE "Record ",id
 &sql(SELECT Sample.MyTC_sys_CategorizeSQL(:inputstring) INTO :CategoryLabel)
 WRITE " assigned category: ",CategoryLabel,!
 }

Once texts have been classified, you can use this classification to filter texts using the %iKnow.Filters.SimpleMetadataFilter

class. See Filtering by User-defined Metadata for further details.

126 Using InterSystems Natural Language Processing (NLP)

Text Categorization

14
Dominance and Proximity

The NLP semantics package consists of two classes: %iKnow.Semantics.DominanceAPI and %iKnow.Semantics.ProximityAPI.
These classes with their parameters and methods are described in the InterSystems Class Reference.

This chapter describes:

• Semantic Dominance

• Semantic Proximity

14.1 Semantic Dominance
Semantic dominance is the overall importance of an entity within a source. NLP determines semantic dominance by per-
forming the following tests and obtaining statistical results:

• The number of times that an entity appears in the source (the frequency).

• The number of times that each component word of an entity appears in the source.

• The number of words in the entity.

• The type of entity (concept or relation).

• The diversity of entities in the source.

• The diversity of component words in the source.

Non-relevant and path-relevant words have no effect on dominance and frequency calculations.

Note: Japanese uses a different, language-specific set of statistics to calculate the semantic dominance of an entity. See
NLP Japanese.

NLP generates these values when the sources are loaded as part of NLP indexing. It combines these values to produce a
dominance score for each entity. The higher the dominance score, the more dominant the entity is within the source.

For example, for the concept “cardiovascular surgery” to be semantically dominant in a document, a statistical analysis
would be performed. It determines that this concept appears 20 times in the source. A dominant concept is not the same as
a top concept. In this source the concepts “doctor” (60 times), “surgery” (50 times), “operating room” (40 times), and
“surgical procedure” (30 times) are far more common. However, the component words of “cardiovascular surgery” appear
over twice as many times as the concept itself: “cardiovascular” (50 times) and “surgery” (80 times), which lends support
to this being a dominant concept. In contrast, the concept “operating room” appears 40 times, but its component words

Using InterSystems Natural Language Processing (NLP) 127

https://www.intersystems.com/assets/sites/6/iKnow_Japanese_Summary_ver1_6P.pdf

appear barely more often than the concept: “operating” 60 times and “room” only 45 times. This indicates that this source
is much more concerned with cardiovascular matters and surgery than it is with rooms.

NLP gives these frequency counts greater or lesser weight based on the number of words in the original entity and whether
that entity is a concept or a relation. (There is a much smaller number of commonly-occurring relations than concepts.)

However, to determine how dominant a concept really is, NLP has to compare it to the total number of concepts in the
source. If 5% of the concepts in the source contain the words “cardiovascular” and “surgery”, and these words do not
combine in other concepts nearly as frequently as they do together, we know that these words not only appear frequently
in the source, but that the source does not have a wide range of subject matter. If, however, the source contains a nearly
equal occurrence of the word “surgery” in concepts with “hand”, “kidney” and “brain” and the word “cardiovascular”
appears nearly as often with the words “exercise” and “diet” it is apparent that the source contains a wide range of subject
matter. The concept “cardiovascular surgery” and its component words may appear more frequently than others, but may
not significantly dominate the subject matter of the source.

By performing these statistical calculations, NLP can determine the dominant concepts in a source — the subjects that are
of greatest interest to you. NLP performs this analysis without using an external reference corpus (such as pre-existing
table of the relative frequency of words in a “typical” medical text). NLP determines dominance using only the contents
of the actual source text, and thus can be used on sources on any topic without any prior knowledge of the subject matter.

14.1.1 Dominance in Context

NLP calculates the dominance of entities (concepts and relations) within a source and assigns each an integer value. It
assigns the most dominant concept(s) in a source a dominance value of 1000. You can use the Indexing Results tool to list
the dominance values for concepts in a single source.

NLP calculates the dominance of CRCs within a source. The algorithm uses the dominance values of the entities within
the CRC. CRC dominance values are intended only for comparison with other CRC dominance values; CRC dominance
values should not be compared with entity dominance values. You can use the Indexing Results tool to list the dominance
values for CRCs in a single source.

NLP calculates the dominance of concepts across all loaded sources as a weighted average. These concept dominance
scores are fractional numbers, with the largest possible number being 1000. You can use the Domain Explorer tool Dominant

Concepts option to list the dominance scores for concepts in all loaded sources. You can also use the
%iKnow.Semantics.DominanceAPI GetTop() method to list the dominance scores for concepts in all loaded sources.

14.1.2 Concepts of Semantic Dominance

The following are the key elements of semantic dominance:

• Profile: the counts of elements that are used to calculate a dominance score.

• Typical: a typical source is a source in which the dominant entities in that source are most similar to the dominant
elements of the group of sources. This is the opposite of Breaking.

• Breaking: a breaking source is a source in which the dominant entities in that source are least similar to the dominant
elements of the group of sources. This is the opposite of Typical. For example, a breaking news story would likely be
least similar to the dominant entities in all of the news stories from the previous month.

• Overlap: the number of occurrences of an entity in different sources.

• Correlation: a comparison of the entities in a source with a list of entities, returning a correlation percentage for each
source.

128 Using InterSystems Natural Language Processing (NLP)

Dominance and Proximity

14.1.3 Semantic Dominance Examples

This chapter describes and provides examples for the following semantic dominance queries:

• Dominance scores for top concepts in the domain

• Dominance score for a specified entity

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

14.1.3.1 Concepts with Top Dominance Scores in the Domain

The GetTop() method returns the top concepts (or relations) by dominance scores for all loaded sources. GetTop() supports
filters and blacklists.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCount
 SET numSrcD=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
 WRITE "The domain contains ",numSrcD," sources",!!
DominantConcepts
 DO ##class(%iKnow.Semantics.DominanceAPI).GetTop(.profresult,domId,1,50)
 WRITE "Top Concepts in Domain by Dominance Score",!
 SET j=1
 WHILE $DATA(profresult(j),list) {
 WRITE $LISTGET(list,2)
 WRITE ": ",$LISTGET(list,3),!
 SET j=j+1 }
 WRITE !,"Printed ",j-1," dominant concepts"

14.1.3.2 Dominance Score for a Specified Entity

NLP uses the GetDomainValue() method to return the dominance value for a specified entity. You specify the entity by
its entity Id (a unique integer), and specify the entity type by a numeric code. The default entity type is 0 (concept).

A single set of unique entity Ids is used for concepts and relations; therefore, no concept has the same entity Id as a relation.
A separate set of unique entity Ids is used for CRCs; therefore, a CRC may have the same entity Id as a concept or a relation.
This numbering is entirely coincidental; there is no connection between the entities.

Using InterSystems Natural Language Processing (NLP) 129

Semantic Dominance

The following example takes the top 12 entities and determines the dominance score for each entity. As one can see from
the results of this example, the top (most frequently occurring) entities do not necessarily correspond to the entities with
the highest dominance scores:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
TopEntitiesDominanceScores
 DO ##class(%iKnow.Queries.EntityAPI).GetTop(.result,domId,1,12)
 SET i=1
 WHILE $DATA(result(i)) {
 SET topstr=$LISTTOSTRING(result(i),",",1)
 SET topid=$PIECE(topstr,",",1)
 SET val=$PIECE(topstr,",",2)
 SET spc=25-$LENGTH(val)
 WRITE val
 WRITE $JUSTIFY("top=",spc),i
 WRITE " dominance="
 WRITE ##class(%iKnow.Semantics.DominanceAPI).GetDomainValue(domId,topid,0),!
 SET i=i+1 }
 WRITE "Top ",i-1," entities and their dominance scores"

14.2 Semantic Proximity
Semantic proximity is a calculation of the semantic “distance” between two entities within a sentence. The higher the
proximity integer, the closer the entities.

As a demonstration of this semantic distance, given the sentence:

“The giraffe walked with long legs to the base of the tree, then stretched his long neck
 up to reach the lowest leaves.”

the proximity of the concept “giraffe” might be as follows: long legs=64, base=42, tree=32, long neck=25, lowest leaves=21.

Semantic proximity is calculated for each entity in each sentence, then these generated proximity scores are added together
producing an overall proximity score for each entity for the entire set of source texts. For example, given the sentences:

“The giraffe walked with long legs to the base of the tree, then stretched his long neck
 up to reach the lowest leaves. Having eaten, the giraffe bent his long legs and stretched
 his long neck down to drink from the pool.”

130 Using InterSystems Natural Language Processing (NLP)

Dominance and Proximity

the proximity of the concept “giraffe” might be as follows: long legs=128, long neck=67, base=42, tree=32, pool=32,
lowest leaves=21.

Entity proximity is commutative; this means that the proximity of entity1 to entity2 is the same as the proximity of entity2
to entity1. NLP does not calculate a semantic proximity of an entity to itself. For example, the sentence “The boy told a
boy about another boy.” would not generate any proximity scores, but the sentence “The boy told a younger boy about
another small boy.” generates the proximity scores younger boy=64, small boy=42. If the same entity appears multiple
times in a sentence, the proximity score is additive. For example, the proximity for the concept “girl” in the sentence “The
girl told the boy about another boy.” is boy=106, the total the two proximity scores 64 and 42.

14.2.1 Japanese Semantic Proximity

NLP semantic analysis of Japanese uses an algorithm to create Entity Vectors. An entity vector is an ordering of entities
in the sentence that follow a predefined logical sequence. When NLP converts a Japanese sentence into an entity vector it
commonly rearranges the order of entities. Semantic proximity for Japanese uses the entity vector entity order, not the
original sentence entity order.

14.2.2 Proximity Examples

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following example uses the GetProfile() method to return the proximity of the concept “student pilot” to other concepts
in sentences in all of the sources in the domain. GetProfile() supports filters and blacklists.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
ProximityForEntity
 SET entity="student pilot"
 DO ##class(%iKnow.Semantics.ProximityAPI).GetProfile(.eresult,domId,entity,1,20)
 SET k=1
 WHILE $DATA(eresult(k)) {
 SET item=$LISTTOSTRING(eresult(k))
 WRITE $PIECE(item,",",1)," ^ "
 WRITE $PIECE(item,",",2)," ^ "
 WRITE $PIECE(item,",",3),!
 SET k=k+1 }
 WRITE !,"all done"

Using InterSystems Natural Language Processing (NLP) 131

Semantic Proximity

The following example uses the GetProfileBySourceId() method to list the concepts with the greatest proximity to a given
entity for each source. Each concept is listed by entity Id, value, and proximity score.

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 25 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
SourceCountQuery
 SET totsrc=##class(%iKnow.Queries.SourceAPI).GetCountByDomain(domId)
GetEntityID
 SET entId=##class(%iKnow.Queries.EntityAPI).GetId(domId,"student pilot")
QueryBySource
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,totsrc)
 SET j=1,k=1
 WHILE $DATA(result(j),srclist) {
 SET src = $LISTGET(srclist)
 WRITE !,"Source id: ",src,!
 SET entity="student pilot"
 DO ##class(%iKnow.Semantics.ProximityAPI).GetProfileBySourceId(.srcresult,domId,entId,src,1,totsrc)

 WHILE $DATA(srcresult(k)) {
 SET item=$LISTTOSTRING(srcresult(k))
 WRITE $PIECE(item,",",1)," ^ "
 WRITE $PIECE(item,",",2)," ^ "
 WRITE $PIECE(item,",",3),!
 SET k=k+1 }
 SET k=1
 SET j=j+1 }
 WRITE !!,"Printed all ",j-1," sources"

132 Using InterSystems Natural Language Processing (NLP)

Dominance and Proximity

15
Custom Metrics

You can customize NLP to allow users to add their own custom metrics for entities, CRCs, CCs, paths, sentences and/or
sources. These metrics can be populated for all sources in the domain, or for select sources. You can then query by these
custom metric values.

Note: Custom Metrics software is a Technology Preview. A Technology Preview is intended as a way of introducing
and providing access to new software capabilities that InterSystems believes will be useful in enhancing the
effectiveness of existing and future applications.

The capabilities listed here are ready for use by customers, but they are not yet complete in functionality and
design. Customers who take advantage of these capabilities must understand:

• InterSystems makes no backward compatibility guarantee with future updates;

• Customers may incorporate these capabilities in deployed applications, but must first check with InterSystems
to determine best course of action;

• Customers who deploy these capabilities in their applications must commit to upgrading to the final released
version.

InterSystems strongly encourages those who incorporate these items in their software to provide feedback on their
experiences.

15.1 Implementing Custom Metrics
Implementation of custom metrics involves the following steps:

1. Define a metric: To define one or more metrics, implement a subclass of %iKnow.Metrics.MetricDefinition and add an
XData block named “Metrics” that specifies the properties for one or more custom metrics.

2. Define the metric computation: To compute the values of these metrics, implement the calculations in a
%iKnow.Metrics.MetricBuilder subclass. This subclass should implement one or more of the Calculate***Metrics()
methods to support calculating custom metrics for the corresponding target and type. For example,
CalculateEntUniMetrics() calculates a metric targeting entities, applicable to the whole domain.

3. Register the metric definition: To associate a metric definition with a particular domain, call the Register() method of
the %iKnow.Metrics.MetricDefinition class to register your %iKnow.Metrics.MetricBuilder subclass as the "builder
class" in the definition. This registers all metrics, their properties and targets, as defined in the “Metrics” XData block.
Registering the metric definition configures any data structures required to store the metric values.

Using InterSystems Natural Language Processing (NLP) 133

If the domain was created as a subclass of %iKnow.DomainDefinition and metrics were defined for the domain, you do
not have to call the Register() method to register your metric definition.

4. Build the metric values: To build the metric values using a %iKnow.Metrics.MetricBuilder implementation, call the
Build() or BuildAll() method of the builder class. These methods build all applicable metrics, forwarding the actual
metric calculations to the Calculate***Metrics() implementations. You can specify a filter to limit the custom metrics
build to a defined subset of sources.

Unless your %iKnow.Metrics.MetricBuilder subclass overrides the SUPPORTSMULTIPROCESS parameter (default =
1), the Build() method will divide the work over multiple processes, each instantiating separate MetricBuilder objects
and processing batch after batch of entries using those builder objects. For source-indexed target types, these are batches
of sources, for which all the target elements are processed by the same builder process.

5. Optimize the build process: %iKnow.Metrics.MetricBuilder provides a number of callback utility methods, such as
OnBeforeBuildMetrics(), OnBeforeBuildMetricsBatch(), OnBeforeBuildMetricsForSource() and the corresponding
OnAfter***() methods that can help in optimizing performance by pre-calculating values for a whole batch, which
are then selected in the individual Calculate***Metrics() methods. The individual Calculate***Metrics() methods
return their values through an output parameter pValues, which is to be populated indexed by metric name (as a single
MetricBuilder class can support and calculate multiple metrics in one pass): pValues("MyMetric") = [MyValue].

6. Get the results: %iKnow.Metrics.MetricAPI provides a number of methods that you can use to interact with custom
metrics registered in a particular domain. You can use these methods to return the custom metrics results.

When Calculate***Metrics() methods don't return any values for a particular target element, the existing metric value
is retained (if any). Returning "" for a value will overwrite (erase) the existing value.

For examples, refer to the Aviation.Metrics.Builder and the Aviation.Metrics.Definition classes.

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

15.2 Types and Targets
• A metric has a type which specifies whether the metric values apply within the context of the whole domain, or just

one particular source or metadata group. The available values are $$$IKMTRTYPEDOMAIN, $$$IKMTRTYPE-
SOURCE, and $$$IKMTRTYPEGROUP.

$$$IKMTRTYPEGROUP metrics are valid in the context of a group of sources, as defined by a particular metadata
field. Metric Builder classes for this type of metric can use the CurrentFieldName and CurrentFieldValue property
values as part of their Calculate***Metrics() implementation.

• A metric has one or more targets, which are the elements the custom metric applies to. The available values are
$$$IKMTRENTITY, $$$IKMTRCRC, $$$IKMTRCC, $$$IKMTRPATH, $$$IKMTRSENTENCE, and
$$$IKMTRSOURCE. The target is specified by which Calculate***Metrics() method you specify. For example,
CalculateEntUniMetrics() applies to target $$$IKMTRENTITY; how it is applied depends upon the type.

15.3 Copying Metrics
You can copy metrics from one domain to another within the current namespace.

• You can use the CopyMetrics() method of the %iKnow.Utils.CopyUtils class to copy all metric definitions in a domain
to another domain. Optionally, this method also copies the metric values from one domain to another.

134 Using InterSystems Natural Language Processing (NLP)

Custom Metrics

• You can use the CopyMetric() method of the %iKnow.Utils.CopyUtils class to copy a single metric definition in a
domain to another domain. This method does not copy metric values.

• You can use the CopyDomain() method of the %iKnow.Utils.CopyUtils class to copy all metric definitions as part of a
domain copy operation. Optionally, this method also copies the metric values as part of the domain copy operation.

Using InterSystems Natural Language Processing (NLP) 135

Copying Metrics

16
Smart Matching: Creating a Dictionary

Smart Matching means combining the results of the NLP Indexing process with some external knowledge you have in the
form of a dictionary, taxonomy, or ontology. What makes NLP matching “smart” is that those Indexing results help you
judge the quality of a match because they identify which words belong together to form concepts and relations. For example,
NLP can identify if a match for your dictionary term "flu" is actually referring to the concept "flu" or the concept "bird flu"
in your indexed text source. In the latter case, which is called a partial match, it is clear the match should or could be treated
differently than the full match where the dictionary term corresponds exactly to the entity in the indexed text source.

To perform Smart Matching, you must create or acquire a dictionary. If you are creating a dictionary, you must then populate
it with the items and terms that you wish to use for matching. Once you have a populated dictionary, you can perform
matching operations using the contents of the dictionary.

Note: Dictionary definition is not supported for Japanese at this time.

This chapter describes:

• Dictionary conceptual structure and terminology

• Creating a dictionary and populating it with items and terms

• Domain-dependent and domain-independent dictionaries

• Creating dictionary format terms

• Listing dictionaries

• Copying dictionaries

• Extending dictionary constructs

16.1 Introducing Dictionary Structure and Matching
To populate an NLP dictionary you first create an item, then associate one or more terms with that item. Commonly a dic-
tionary consists of multiple items, with each item associated with multiple terms. An item is a word or phrase that is a rel-
evant tag for many entities in the source texts. When an entity in the source texts is determined to be a match, it is tagged
with the item. For example, the item “ship” is a relevant tag for “ship”, “boat”, “sail”, “oars”, and so forth.

To perform this matching, you populate each item in the dictionary with match terms. A term can be single entity (like
“motor boat”) or a phrase or sentence (like “boats are rowed with oars or paddles”). NLP indexes each term in the dictionary
using the same language model used for the source texts. NLP then matches each term with the same content unit in the
source texts (a Concept term is matched against a Concept in source text; a CRC term is matched against a CRC in source

Using InterSystems Natural Language Processing (NLP) 137

text). If NLP identifies a match between a term and a unit of source text, NLP tags the source text passage with the associated
dictionary item. This matching frequently is not identical, but requires NLP to use a scoring algorithm to determine if the
term and source text warrant being tagged as a match.

The NLP dictionary facility supports stemming if stemming has been activated for the current domain. This means that a
single dictionary term can match any other form of the same word in a source text.

16.1.1 Terminology

A Dictionary is a way to group different terms that have something to do with one another in a logical way. A dictionary
could for example be Cities, ICD10 codes, or French wines. As a dictionary is the level of aggregation used within the
matching APIs, it is specific to the use case to decide what level of real-world grouping should correspond to a dictionary.
Taking a higher level (such as "all ICD10 codes") will yield better performance and use lower disk space, but a lower level
(such as "a separate one for all ICD10 categories") might offer grouped results with greater granularity. Each dictionary
has a name and a description.

A Dictionary Item is a uniquely identifiable item in your dictionary. Examples of a dictionary item could be cities, the
individual codes in ICD10 or individual chateaux. Each dictionary typically has many dictionary items (lots of small dic-
tionaries with few items can decrease performance). A dictionary item has a URI, which should be unique within the domain
and can be used as an external identifier, and an optional description. This URI can be used when building rules to interpret
matching results later on.

A Dictionary Term is a string that could appear somewhere in a text and represent the Dictionary Item it belongs to. For
example, "Antwerp", "Anvers" and "Antwerpen" could be different terms associated with the same dictionary item repre-
senting the city of Antwerp. Dictionary terms are the free text strings on which the actual matching is based when doing
string-based matching and could be different spellings, translations or synonyms of what your Dictionary Item stands for.
These strings are passed through the engine and, when containing more than just a single entity, will automatically be
transformed into a more complex structure to be able to match across the boundaries of a single concept (CRC or Path). A
dictionary term should also have a language associated with it, if it needs to be processed by the engine.

When processing a new dictionary term by passing it through the NLP engine, one or more Dictionary Elements are generated
to represent the different entities identified within the term. For example, a dictionary term "failure of the liver" would be
translated into the three elements "failure", "of" and "liver", with "the" being discarded as non-relevant. These elements
are generated and managed automatically and only figure in some types of output, so you shouldn't worry too much about
them.

If you want to identify dates, numbers or other formatted pieces of string, you can use Dictionary Formats to specify them,
and these can then be included in a Dictionary Term, either representing the complete term, or just a single element within
a more complex one. A format is a meaningful pattern of characters, such as a date format. You could associate the formats
“nn/nn/nnnn” and “nnnn-nn-nn” with the item named Date. NLP tags any occurrence of these formats in the source
texts with the Date item.

16.2 Creating a Dictionary
To define a dictionary use the %iKnow.Matching.DictionaryAPI class methods to define and populate a dictionary, as described
in this section. You can define a dictionary specifically for a domain, or define a dictionary that is domain-independent and
can be used by any domain in the current namespace.

%iKnow.Matching.DictionaryAPI has a number of methods to create a new dictionary and to assign it items, terms, and formats:

• CreateDictionary() is used to create an NLP dictionary.

The 1st argument specifies the domain Id as an integer. To assign the dictionary to a domain, specify its domain ID as
a positive integer. To define the dictionary as domain-independent, specify 0 as its domain ID. The 2nd argument

138 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Creating a Dictionary

allows you to specify a meaningful dictionary name. The remaining arguments are optional. The 3rd argument allows
you to provide a description of the dictionary, the 4th allows you to specify the language (default is English), and the
5th a custom matching profile. CreateDictionary() returns the dictId, a unique integer. This dictionary ID is used by
subsequent smart matching methods. If a dictionary with the specified name already exists, CreateDictionary() returns
-1.

• CreateDictionaryItem() is used to create an item within a dictionary. You specify the dictId. CreateDictionaryItem()
returns the dictItemId, a unique integer.

• CreateDictionaryTerm() is used to associate a term with an existing item. You supply the dictItemId.
CreateDictionaryTerm() returns the dictTermId, a unique integer.

• CreateDictionaryItemAndTerm() is a shortcut that can be used in a specific case. It can be used to create an item
and to create a term associated that item when both the term and the item have the same value. For example the item
“flu” might have several associated terms (“influenza”, ”le grippe”, bird flu”, “H1N1”); you can use
CreateDictionaryItemAndTerm() to create the item “flu” and assign it the associated term “flu”. You could, of
course, perform the same operation using two method calls: CreateDictionaryItem() and CreateDictionaryTerm().

• CreateDictionaryTermFormat() is used to associate a term that consists of a format with an existing item. You supply
the dictItemId. CreateDictionaryTermFormat() returns the dictTermId, a unique integer.

16.2.1 Dictionaries and Domains

Each dictionary you create can either be specific to a domain, or can be domain-independent and usable by any domain in
the current namespace:

• A domain-specific dictionary is assigned to a domain by specifying a domainId in the CreateDictionary() method.
You specify the same domainId for the dictionary’s items, terms, and formats. This method returns a dictId as a
sequential positive integer. Matching methods that use this dictionary reference it by this dictId.

• A domain-independent dictionary is not assigned to a domain. Instead, you specify a domainId of 0 in the
CreateDictionary() method. You also specify a domainId of 0 for the dictionary’s items, terms, and formats. This
method returns a dictId as a sequential positive integer. Matching methods that use this dictionary reference it by a
negative dictId; for example, the dictionary identified by dictId 8 is referenced by the dictId value -8.

Using a domain-independent dictionary has important consequences for stemming. When you create a domain-specific
dictionary of ordinary terms, NLP automatically stems the dictionary terms if the domain is configured as stemmed,
and therefore dictionary terms and source text match. When you create a domain-independent dictionary, stem conversion
of the dictionary terms is not performed. You can either create a dictionary of ordinary (unstemmed) terms, or a dictionary
of stemmed terms. A domain-independent dictionary of ordinary terms cannot be matched against a stemmed domain.
A domain-independent dictionary of stemmed terms cannot be matched against an unstemmed domain.

Just as several domains can all have a domain-specific dictionary with the same dictId value, both a domain-specific dictionary
and a domain-independent dictionary can have the same integer dictId value. Dictionary match operations can use any
combination of domain-specific dictionaries (specified as positive integer IDs) and domain-independent dictionaries
(specified as negative integer IDs).

Queries in the Matching API returning matching results will return negative identifiers (for the dictId, itemId, and termId)
when the match corresponds to an entry in a domain-independent dictionary. All queries will return the combined results
for domain-specific and domain-independent dictionary matches, with the exception of GetDictionaryMatches() and
GetDictionaryMatchesById(), which only return results for either domain-specific or domain-independent dictionaries,
depending on the values specified in the dictIds parameter. The default is domain-specific dictionary matches.

16.2.2 Dictionary Creation Examples

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

Using InterSystems Natural Language Processing (NLP) 139

Creating a Dictionary

The following example creates a dictionary named "AviationTerms" and populates it with two items and their associated
terms. This dictionary is assigned to a specific domain.

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 /* ... */
CreateDictionary
 SET dictname="AviationTerms"
 SET dictdesc="A dictionary of aviation terms"
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname,dictdesc)
 IF dictId=-1 {WRITE "Dictionary ",dictname," already exists",!
 GOTO ResetForNextTime }
 ELSE {WRITE "created a dictionary ",dictId,!}
PopulateDictionaryItem1
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(domId,dictId,
 "aircraft",domId_dictId_"aircraft")
 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "airplane")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "helicopter")
PopulateDictionaryItem2
 SET itemId2=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItemAndTerm(domId,dictId,
 "weather",domId_dictId_"weather")
 SET i2term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId2,
 "meteorological information")
 SET i2term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId2,
 "visibility")
 SET i2term3Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId2,
 "winds")
DisplayDictionary
 SET stat=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryItemsAndTerms(.result,domId,dictId)
 SET i=1
 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 WRITE "End of items in dictionary ",dictId,!!
 /* ... */
ResetForNextTime
 IF dictId = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname)}
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat {WRITE "deleted dictionary ",dictId,! }
 ELSE { WRITE "DropDictionary error ",$System.Status.DisplayError(stat) }

The following example creates a the same dictionary as the previous example, except that this dictionary can be used by
any domain within the current namespace:

CreateDictionary
 SET dictname="AviationTerms"
 SET dictdesc="A dictionary of aviation terms"
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(0,dictname,dictdesc)
 IF dictId=-1 {WRITE "Dictionary ",dictname," already exists",!
 GOTO ResetForNextTime }
 ELSE {WRITE "created a dictionary ",dictId,!}
PopulateDictionaryItem1
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(0,dictId,
 "aircraft",0_dictId_"aircraft")
 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId,
 "airplane")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId,
 "helicopter")
PopulateDictionaryItem2
 SET itemId2=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItemAndTerm(0,dictId,
 "weather",0_dictId_"weather")
 SET i2term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId2,
 "meteorological information")
 SET i2term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId2,
 "visibility")
 SET i2term3Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId2,
 "winds")
DisplayDictionary
 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 SET stat=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryItemsAndTerms(.result,0,dictId)
 SET i=1
 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 WRITE "End of items in dictionary ",dictId,!!
 /* ... */
ResetForNextTime
 IF dictId = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(0,dictname)}

140 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Creating a Dictionary

 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(0,dictId)
 IF stat {WRITE "deleted dictionary ",dictId,! }
 ELSE { WRITE "DropDictionary error ",$System.Status.DisplayError(stat) }

16.2.3 Defining a Format Term

The %iKnow.Matching.Formats package provides three simple format classes:

• %iKnow.Matching.Formats.SimpleDateFormat, which matches dates and times in a variety of formats. For a list of the
supported date and time formats, refer to the $ZDATETIMEH function in the ObjectScript Reference.

• %iKnow.Matching.Formats.SimplePrefixFormat, which matches any entity that begins with a specified prefix string.

• %iKnow.Matching.Formats.SimpleSuffixFormat, which matches any entity that ends with a specified suffix string.

You can create additional format classes as needed.

The following example uses %iKnow.Matching.Formats.SimpleSuffixFormat. It first defines a dictionary containing one item:
speed. The “speed” item contains two terms: “excessive speed” and the suffix format term “mph” (miles per hour). This
suffix format will match any entity that ends with the suffix “mph”, for example “65mph”:

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 /* ... */
CreateDictionary
 SET dictname="Traffic"
 SET dictdesc="A dictionary of traffic enforcement terms"
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname,dictdesc)
 IF dictId=-1 {WRITE "Dictionary ",dictname," already exists",!
 GOTO ResetForNextTime }
 ELSE {WRITE "created a dictionary ",dictId,!}
CreateDictionaryItemAndTerms
 SET
item1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(domId,dictId,"speed",domId_dictId_"speed")

 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,item1Id,
 "excessive speed")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTermFormat(domId,
 item1Id,"%iKnow.Matching.Formats.SimpleSuffixFormat",$LB("mph",0,3))
 WRITE "dictionary=",dictId,!,"item=",item1Id,!,"terms=",term1Id," ",term2Id,!!
 /* ... */
ResetForNextTime
 IF dictId = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname)}
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat {WRITE "deleted dictionary ",dictId,! }
 ELSE { WRITE "DropDictionary error ",$System.Status.DisplayError(stat) }

16.2.4 Multiple Formats in a Dictionary Term

You can input dictionary formats directly as part of a dictionary term. This allows you to create a dictionary term containing
multiple elements, including one or more format elements, as well as string elements.

To use this feature, you specify a "coded" description of the format as part of the string submitted to the
CreateDictionaryTerm() method. This coded description has the following format:

@@@User.MyFormatClass@@@param1@@@param2@@@

This description consists of the full class name of the format class (implementing %iKnow.Matching.Formats.Format), a
@@@ separator, and a @@@-delimited list of the format parameters to be passed to the format class. The entire description
is delimited with @@@ markers at the beginning and end.

If the format class takes no parameters, or the defaults are to be used, specify the format class name delimited by @@@
markers.

Using InterSystems Natural Language Processing (NLP) 141

Creating a Dictionary

When including this format in a dictionary term string, you must make sure that NLP will recognize it as a single entity.
For examples, the term "was born in @@@User.MyYearFormat@@@" is interpreted as a single entity, but the term "was
born in the year @@@User.MyYearFormat@@@" is not.

If NLP cannot find the specified format class, the @@@ usage is considered intentional and the whole entity is treated as
a simple string element.

Using this syntax makes it easier to load dictionaries from files or tables without requiring separate steps or actions for the
formats.

16.3 Listing and Copying Dictionaries
The %iKnow.Matching.DictionaryAPI class has a number of methods to count or list existing dictionaries and their items and
terms.

The %iKnow.Utils.CopyUtils class has a number of methods to copy a dictionary or all dictionaries from one domain to
another.

16.3.1 Listing Existing Dictionaries

The following example lists all of the dictionaries in the domain. For the purpose of demonstration, this example first creates
two empty dictionaries, one in English (the default language) and one in French:

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 SET dictname1="Diseases",dictname2="Maladies"
 SET dictdesc1="English disease terms",dictdesc2="French disease terms"
CreateFirstDictionary
 SET dictId1=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname1,dictdesc1)
 IF dictId1 = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname1)
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat '= 1 { WRITE "DropDictionary error ",$System.Status.DisplayError(stat)
 QUIT }
 GOTO CreateFirstDictionary }
 ELSE {WRITE "created a dictionary ",dictId1,!}
CreateSecondDictionary
 SET dictId2=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname2,dictdesc2,"fr")
 IF dictId2 = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname2)
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat '= 1 { WRITE "DropDictionary error ",$System.Status.DisplayError(stat)
 QUIT }
 GOTO CreateSecondDictionary }
 ELSE {WRITE "created a dictionary ",dictId2,!}

GetDictionaries
 SET stat=##class(%iKnow.Matching.DictionaryAPI).GetDictionaries(.dicts,domId)
 WRITE "get dictionaries status is:",$System.Status.DisplayError(stat),!!
 SET k=1
 WHILE $DATA(dicts(k)) {
 WRITE $LISTTOSTRING(dicts(k)),!
 SET k=k+1 }
 WRITE "End of list of dictionaries"

GetDictionaries() lists the Id, name, description, and language for each dictionary.

16.3.2 Copying Dictionaries

You can copy dictionaries from one domain to another within the current namespace.

• You can use the CopyDictionaries() method of the %iKnow.Utils.CopyUtils class to copy all defined dictionaries in a
domain to another domain. By default this method also copies matching profiles from one domain to another.

142 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Creating a Dictionary

• You can use the CopyDictionary() method of the %iKnow.Utils.CopyUtils class to copy a single defined dictionary in
a domain to another domain. By default this method also maps matching profile Ids from one domain to another.

• You can use the CopyDomain() method of the %iKnow.Utils.CopyUtils class to copy dictionaries as part of a domain
copy operation.

16.4 Extending Dictionary Constructs
Though NLP only describes simple dictionaries in the Matching API, this does not restrict you from using more advanced
tools like ontologies, taxonomies or other more hierarchical constructs. The goal of the Matching API is to provide the
hooks for just the matching, rather than yet another generic structure that tries to cover every construct. Therefore, you
should just flatten the structure of the ontology or taxonomy you have. By appropriately choosing your dictionary item
URIs, you'll be able to reconstruct or interpret the matching results within the context of your ontology or taxonomy.

In the Matching API, the formatting bits are pluggable in the sense that you can provide your own implementation of a
class that does for example regular expression matching by implementing the %iKnow.Matching.Formats.Format interface.

Using InterSystems Natural Language Processing (NLP) 143

Extending Dictionary Constructs

17
Smart Matching: Using a Dictionary

Smart Matching means combining the results of the NLP Indexing process with some external knowledge you have in the
form of a dictionary, taxonomy, or ontology. What makes NLP matching “smart” is that those Indexing results help you
judge the quality of a match because they identify which words belong together to form concepts and relations. For example,
NLP can identify if a match for your dictionary term "flu" is actually referring to the concept "flu" or "bird flu" or “no flu
symptoms” in your indexed text source. In the second case, which is called a partial match, it is clear the match should or
could be treated differently than a full (exact) match where the dictionary term corresponds exactly to the entity in the
indexed text source. In the third case, the match is identified as a partial match with negation.

To perform Smart Matching, you must create or acquire a dictionary. Creating and populating a dictionary is described in
the previous chapter. Once you have a populated dictionary, you can perform matching operations using the contents of
the dictionary.

17.1 How Dictionary Matching Works
NLP matches each term in the dictionary with the same level construct in the source texts (a Concept term is matched
against a Concept in source text; a CRC term is matched against a CRC in source text). These matches can be exact, or can
be partial matches. If the match between term and source text is exact, NLP tags the source text passage with the dictionary
item associated with that term. If the match between term and source text is not exact, NLP scores the degree of match
between them. This match scoring involves calculating a match score for each component entity (concept or relation), then,
if required, using these entity match scores to calculate the match score for a CRC, path, or sentence. If the scoring of a
partial match achieve a configured minimal match score, NLP tags the source text passage with the dictionary item associated
with the term (see the MinimalMatchScore property in %iKnow.Matching.MatchingProfile).

17.1.1 Match Scoring

NLP generates a match score, a floating point number, which is calculated from all of the entity matches detected between
the dictionary term and the unit of source text. For an entity match, this match score can range between 0 (no match) and
1 (an exact match). For CRC or path matches, this match includes this range, but can be greater than 1. The algorithm used
to calculate this score is complex, but includes the following considerations:

• A full match of an entity can be exact (same words in same order) or scattered (same words in different order). The
match score for a scattered match is determined by multiplying 1 (exact match) by the value of the
ScatteredMatchMultiplier property of the matching profile.

• A partial match of an entity (concept or relation) is assigned a percentage based on the percentage of the source text
string that matches the dictionary term.

Using InterSystems Natural Language Processing (NLP) 145

• In a partial match of an entity, a matching relation is assigned only half as much value as a matching concept. You can
change this ratio (for example, to an equal evaluation of relation and concept matches) by setting the
RelationshipScoreMultiplier property of the matching profile.

• When matching a CRC, path, or sentence, the match scores from the entity matches are added, then divided by the
length of the dictionary term, multiplied by the number of matching entities, then multiplied by the DisorderMultiplier
property, a value representing the degree of disorder (difference in the sequence of entities) between the unit of source
text and the dictionary term.

• An entity match score can be modified if the entity is part of a negation. By default, the NegationMultiplier property
value is 1 which causes the match score calculation to treat positive entities and a negated entities as equivalent. This
default is generally recommended. You can set the NegationMultiplier to 0, which causes the match score calculation
to skip negated entities. In most cases, a 0 value leads to these matches being skipped altogether, unless it's a composite
match with enough non-negated matched entities to get the score above the MinimalMatchScore threshold. You can
also set this property to a value between 0 and 1, which modifies the entity-level match scores for negated entities,
causing them to be considered partial matches. For example, a value of 0.5 will halve the entity-level score for a negated
entity.

The above is not an exact formula for obtaining a match score. It is provided to show the principal considerations used
when NLP calculates a match score.

NLP provides a matching profile (%iKnow.Matching.MatchingProfile), which consists of the numeric properties mentioned
above, and others. NLP uses this matching profile when calculating a match score. NLP provides default property values
for the matching profile. Unless otherwise specified, the default matching profile is assigned to each dictionary. This default
matching profile provides accurate matching for most applications. Creating and assigning a custom matching profile is
described later in this chapter.

17.2 Matching A String
You can use the %iKnow.Matching.MatchingAPI class to perform matches between a text string and a populated dictionary
(or multiple dictionaries). There are two types of string matches:

• Matching an entity-length string

• Matching a string containing multiple entities. This string may contain one or more sentences.

17.2.1 Matching an Entity String

The GetDictionaryMatches() method matches a single-entity string against a dictionary and returns the match items.
Because this method treats the string as a single entity, it can provide very specific match information. Because
GetDictionaryMatches() takes a string variable, you do not have to index a single-entity string to match it against a dictio-
nary.

 SET domId=##class(%iKnow.Domain).GetOrCreateId("entitytestdomain")
 /* ... */
CreateDictionary
 SET dictname="AviationTerms"
 SET dictdesc="A dictionary of aviation terms"
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname,dictdesc)
 IF dictId=-1 {WRITE "Dictionary ",dictname," already exists",!
 GOTO ResetForNextTime }
 ELSE {WRITE "created a dictionary ",dictId,!}
PopulateDictionary
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(domId,dictId,
 "aircraft",domId_dictId_"aircraft")
 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "airplane")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,

146 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Using a Dictionary

 "single-engine airplane")
 SET term3Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "helicopter")
DisplayDictionary
 SET stat=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryItemsAndTerms(.result,domId,dictId)
 SET i=1
 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 WRITE "End of items in dictionary ",dictId,!!
DoMatching
 SET mystring="A small single-engine two-person airplane cabin"
 SET stat=##class(%iKnow.Matching.MatchingAPI).GetDictionaryMatches(.num,domId,mystring,$LB(dictId))
 IF stat'=1 {WRITE "get matches status is:",$System.Status.DisplayError(stat),!
 QUIT }
 WRITE "The string is: ",mystring,!
 WRITE "The matches are:",!
 SET j=1
 WHILE $DATA(num(j)) {
 WRITE "match number ",j," is ",$LISTTOSTRING(num(j)),!
 SET j=j+1 }
 WRITE "End of match items for dictionary ",dictId,!!
ResetForNextTime
 IF dictId = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname)}
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat {WRITE "deleted dictionary ",dictId,! }

GetDictionaryMatches() provides a matched word bit map that shows the match of each word in the string with the dic-
tionary term. For example, 00101 shows the match of the dictionary term “single-engine airplane” to the string “A small
single-engine two-person airplane / cabin”. The bit map stops when the match completes, so there is no bit for the word
“cabin”. In this example, the isScattered boolean is 0 because the words “single-engine” and “airplane” are in the same
order in the dictionary term and in the string.

Each dictionary match returns a list of match elements. The match in the previous example returns a list of match elements
as follows (your id numbers may differ):

Value in ExampleMeaningPosition

6dictionary Id1

5item Id2

26aircraftdictionary item URI (domain Id +
dict Id + item value)

3

13term Id4

single-engine airplaneterm value5

13element Id (same as term Id)6

termtype of match (term, format, or
unknown)

7

.333333match score8

00101matched word bits9

0is scattered boolean10

nullformat output11

17.2.2 Matching a Sentence String

The GetMatchesBySource() method matches a multiple-entity string against a dictionary and returns the match items.
(Commonly such a string is sentence-length (or longer)). You must first index the string, then match it against the dictionary.
The following example matches a string against the AviationTerms dictionary:

Using InterSystems Natural Language Processing (NLP) 147

Matching A String

DomainCreateOrOpen
 SET dname="onestringdomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO LoadString }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO LoadString }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
LoadString
 SET domId=domoref.Id
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
 SET ^mystring="A single-engine airplane reported poor visibility and strong gusty winds. "_
 "No winds were predicted by local airport ground personnel."
 DO myloader.BufferSource("ref",^mystring)
 DO myloader.ProcessBuffer()
GetExtId
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId,1,20)
 SET i=1
 WHILE $DATA(result(i)) {
 SET extId = $LISTGET(result(i),2)
 SET i=i+1 }
CreateDictionary
 SET dictname="AviationTerms"
 SET dictdesc="A dictionary of aviation terms"
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,dictname,dictdesc)
 IF dictId=-1 {WRITE "Dictionary ",dictname," already exists",!
 GOTO ResetForNextTime }
 ELSE {WRITE "created a dictionary ",dictId,!}
PopulateDictionaryItem1
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(domId,dictId,
 "aircraft",domId_dictId_"aircraft")
 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "single-engine airplane")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId,
 "helicopter")
PopulateDictionaryItem2
 SET itemId2=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItemAndTerm(domId,dictId,
 "weather",domId_dictId_"weather")
 SET i2term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId2,
 "strong winds")
 SET i2term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId2,
 "visibility")
 SET i2term3Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(domId,itemId2,
 "winds")
DisplayDictionary
 SET stat=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryItemsAndTerms(.result,domId,dictId)
 SET i=1
 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 WRITE "End of items in dictionary ",dictId,!!
DoMatching
 SET stat=##class(%iKnow.Matching.MatchingAPI).GetMatchesBySource(.num,domId,extId,$LB(dictId))
 IF stat'=1 {WRITE "get matches status is:",$System.Status.DisplayError(stat),!
 QUIT }
 WRITE "The string is: ",^mystring,!
 WRITE "The matches are:",!
 SET j=1
 WHILE $DATA(num(j)) {
 WRITE "match ",j,": ditem ",$LISTGET(num(j),4),
 " dterm ",$LISTGET(num(j),5),
 " matchscore ",$LISTGET(num(j),8),
 " negated? ",$LISTGET(num(j),15),!
 SET j=j+1 }
 WRITE "End of match items for dictionary ",dictId,!!
ResetForNextTime
 IF dictId = -1 {
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryId(domId,dictname)}
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat {WRITE "deleted dictionary ",dictId,! }
 ELSE { WRITE "DropDictionary error ",$System.Status.DisplayError(stat) }

The following is a match between “No winds” in the string and dictionary term “winds” in item “weather”. (This match
string is returned in %List format, here shown as a comma-separated string):
5,6,12,26weather,33,0,6,.5,1,0,1,1,1,1,1. These element values are explained below:

148 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Using a Dictionary

Value in ExampleMeaningPosition

5match number1

6dictionary Id2

12item Id3

26weatherdictionary item URI (domain Id +
dict Id + item value)

4

33term Id5

0target type6

6target Id7

.5match score8

1matching concept count9

0matching relation count10

1partial match count11

1first matched position in path12

1last matched position in path13

1is ordered14

1negated entity count15

17.3 Matching Sources
Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The GetTotalItemScoresBySource() method matches a source against a dictionary and returns the match scores for each
dictionary item. The following two examples use a domain-independent dictionary. In the dictionary definition, and in any
%iKnow.Matching.DictionaryAPI method referencing the dictionary, specify the domain Id as 0. In any
%iKnow.Matching.MatchingAPI method using the dictionary within a domain, specify the dictionary Id as a negative number.
Hence, SET dictId=-^mydictId.

The following example matches all of the sources in the domain against the AviationTermsND dictionary and returns each
source’s match scores for each dictionary item. You must create the dictionary before running this program.

CreateDictionary
 SET ^mydictname="AviationTermsND"_$HOROLOG
 SET dictdesc="A dictionary of aviation terms"
 SET ^mydictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(0,^mydictname,dictdesc)
 IF ^mydictId=-1 {WRITE "Dictionary ",^mydictname," already exists",!
 QUIT }
 ELSE {WRITE "created a dictionary ",^mydictId,!}
PopulateDictionaryItem1
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(0,^mydictId,
 "aircraft",0_^mydictId_"aircraft")
 SET term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId,
 "single-engine airplane")
 SET term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId,
 "helicopter")
PopulateDictionaryItem2
 SET itemId2=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItemAndTerm(0,^mydictId,
 "weather",0_^mydictId_"weather")
 SET i2term1Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId2,
 "strong winds")
 SET i2term2Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId2,

Using InterSystems Natural Language Processing (NLP) 149

Matching Sources

 "visibility")
 SET i2term3Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId2,
 "winds")
PopulateDictionaryItem3
 SET itemId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryItem(0,^mydictId,
 "flight plan",0_^mydictId_"flight plan")
 SET term3Id=##class(%iKnow.Matching.DictionaryAPI).CreateDictionaryTerm(0,itemId,
 "flight plan")
DisplayDictionary1
 SET stat=##class(%iKnow.Matching.DictionaryAPI).GetDictionaryItemsAndTerms(.result,0,^mydictId)
 WRITE "Status is: ",stat,!
 SET i=1
 WHILE $DATA(result(i)) {
 WRITE $LISTTOSTRING(result(i),",",1),!
 SET i=i+1 }
 WRITE "End of items in dictionary ",^mydictId,!!

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 10 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DoMatching
 SET dictId=-^mydictId
 SET num=0
 FOR j=1:1:10 {SET extId=##class(%iKnow.Queries.SourceAPI).GetExternalId(domId,j)
 SET mstat=##class(%iKnow.Matching.MatchingAPI).GetTotalItemScoresBySource(.mresult,domId,
 extId,$LB(dictId))
 IF mstat '=1 {WRITE "End of sources",! QUIT }
 SET k=1
 IF $DATA(mresult(k))=0 {WRITE "no dictionary matches for this source",!}
 ELSE {
 WHILE $DATA(mresult(k)) {
 WRITE $PIECE($LISTTOSTRING(mresult(k)),",",2)," "
 WRITE $PIECE($LISTTOSTRING(mresult(k)),",",4)
 WRITE " matches: ",$PIECE($LISTTOSTRING(mresult(k)),",",6)
 WRITE " score: ",$PIECE($LISTTOSTRING(mresult(k)),",",7),!
 SET k=k+1 }
 }
 SET srcname=$PIECE($PIECE(extId,":",3,4),"\",$l(extId,"\"))
 WRITE "End of ",srcname," match items for dictionary ",dictId,!!
 }

The GetMatchesBySource() method matches each source against a dictionary and returns the match items.

The following example matches all of the sources in the domain against the domain-independent AviationTermsND dictionary
(defined above) and returns each source’s match items, with match score and negation (if present):

DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE

150 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Using a Dictionary

 { SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 10 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
DoMatching
 SET dictId=-^mydictId
 FOR j=1:1:10 {SET extId=##class(%iKnow.Queries.SourceAPI).GetExternalId(domId,j)
 SET stat=##class(%iKnow.Matching.MatchingAPI).GetMatchesBySource(.num,domId,extId,$LB(dictId))
 IF stat'=1 {WRITE "get matches status is:",$System.Status.DisplayError(stat),!
 QUIT }
 WRITE "The matches are:",!
 SET k=1
 WHILE $DATA(num(k)) {
 IF $LISTGET(num(k),15)>0 {WRITE "neg. "}
 WRITE "match ",k,": ditem ",$LISTGET(num(k),4),
 " dterm ",$LISTGET(num(k),5),
 " matchscore ",$LISTGET(num(k),8),!
 SET k=k+1 }
 WRITE !,"Next Source",!
 }
 WRITE "End of match items for dictionary ",dictId,!

17.4 Defining a Matching Profile
Whether a dictionary term and a unit of source text constitute a match is determined by the matching profile properties
found in %iKnow.Matching.MatchingProfile. There are eight properties that together determine whether something is a match
or not. All of these properties take an appropriate default value. By default, every dictionary is assigned the default
matching profile.

You can create a custom matching profile with one or more properties whose value differs from the default. You can then
assign this custom matching profile to a dictionary. Any properties not specified in the custom matching profile take default
values. You can create any number of custom matching profiles. The same matching profile can be applied to multiple
dictionaries. You can define the matching profile to be specific to a domain, or to be available to all domains in the
namespace.

The following example creates three custom matching profiles. The first is specific to a domain and specifies the optional
matching profile name; NLP assigns it a positive integer Id. The second and third are available to all domains in the
namespace; NLP assigns each of them a negative integer Id. Because the third specifies the optional matching profile name,
it must specify 0 as a placeholder for the domain Id parameter:

Using InterSystems Natural Language Processing (NLP) 151

Defining a Matching Profile

 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
 SET domprof=##class(%iKnow.Matching.MatchingProfile).%New(domId,"mydomainCMP")
 WRITE "profile Id=",domprof.ProfileId,!
 WRITE "profile domain=",domprof.DomainId,!
 WRITE "profile name=",domprof.Name,!!
 SET allprof1=##class(%iKnow.Matching.MatchingProfile).%New()
 WRITE "profile Id=",allprof1.ProfileId,!
 WRITE "profile domain=",allprof1.DomainId,!
 WRITE "profile name=",allprof1.Name,!!
 SET allprof2=##class(%iKnow.Matching.MatchingProfile).%New(0,"namespaceCMP")
 WRITE "profile Id=",allprof2.ProfileId,!
 WRITE "profile domain=",allprof2.DomainId,!
 WRITE "profile name=",allprof2.Name

The following example shows how to define a custom matching profile and assign it to a dictionary. It specifies the custom
matching profile instance oref (in this case, customprofile) to the CreateDictionary() method to override the default.

#Include %IKPublic
 SET domId=##class(%iKnow.Domain).GetOrCreateId("mydomain")
CustomizeMatchingProfile
 SET customprofile=##class(%iKnow.Matching.MatchingProfile).%New()
 WRITE "MinimalMatchScore initial value=",customprofile.MinimalMatchScore,!
 SET customprofile.MinimalMatchScore=".4"
 WRITE "MinimalMatchScore custom value=",customprofile.MinimalMatchScore,!
CreateDictionary
 SET dictId=##class(%iKnow.Matching.DictionaryAPI).CreateDictionary(domId,"mydict","","en",customprofile)

 WRITE "created a dictionary with ID=",dictId,!!
 /* . . . */
CleanUpForNextTime
 SET stat=##class(%iKnow.Matching.DictionaryAPI).DropDictionary(domId,dictId)
 IF stat {WRITE "Dropped the dictionary"}
 ELSE {WRITE "DropDictionary error",$System.Status.DisplayError(stat)}

17.4.1 Matching Profile Properties

Whether the terms in a dictionary and a unit of source text constitute a match is determined by the matching profile property
values you define in your custom matching profile. These properties determine the match score for each unit of text and
the threshold which specifies the minimum match score to report as a match. Because the contents of a dictionary tends to
vary depending on the use case, you may wish to customize one or more matching profile properties for your dictionary.
Changing any of these properties may dramatically change the number of matches reported. Therefore, you might want to
experiment with changes to property values while testing on a small subset of your data before registering the matching
profile to match the dictionary to the whole dataset.

The meaning of the properties in %iKnow.Matching.MatchingProfile are explained in the class documentation.

17.4.1.1 MinimalMatchScore

The most common matching profile property to tune is the MinimalMatchScore. This property value is the lower threshold
for matches to be saved. You can set it to a fractional value between 1 (only perfect matches saved) and 0 (all potential
matches saved); the default is 0.33.

• By increasing this property value you can filter out low-quality matches if you have an excessive number of match
candidates. This would be appropriate if your dictionary is fairly generic and contains many common terms. You may
only wish to report CRCs and paths that are a very close match to several of these common terms.

• By decreasing this property value you can increase the number of match candidates. This would be appropriate if your
dictionary is highly specific, consisting only of critical terms that should be flagged at all times. You may wish to
report CRCs and paths that loosely match with a dictionary of technical terms, so as to avoid missing a loose, but sig-
nificant, match.

Setting MinimalMatchScore to 0 returns all possible match results. If you're starting to work on matching a new dictionary
to a small subset of your data, you can start by setting MinimalMatchScore to 0, then gradually increase it, filtering out low-
quality matches, until you get a reasonable number of results.

152 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Using a Dictionary

17.4.2 Domain Default Matching Profile

You can specify a different domain-wide default matching profile by setting the MAT:DefaultProfile ($$$IKPMATDE-
FAULTPROFILE) domain parameter. (The “MAT:” prefix indicates a domain parameter specific to matching operations.)
The following example defines a domain-specific custom matching profile, then assigns it as the default matching profile
for the mydomain domain:

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domo=##class(%iKnow.Domain).Open(dname) }
 ELSE
 { SET domo=##class(%iKnow.Domain).%New(dname) DO domo.%Save()}
 SET domId=domo.Id
 WRITE "domain ",dname," has Id ",domId,!!
CreateProfile
 SET domprof=##class(%iKnow.Matching.MatchingProfile).%New(domId,"mydomainCMP")
 WRITE "profile Id=",domprof.ProfileId,!
 WRITE "profile domain assignment=",domprof.DomainId,!
 WRITE "profile name=",domprof.Name,!
 WRITE "profile properties:",!
 WRITE "default MinimalMatchScore=",domprof.MinimalMatchScore,!
 SET domprof.MinimalMatchScore=.27
 WRITE "changed to MinimalMatchScore=",domprof.MinimalMatchScore,!!
 DO domprof.%Save()
MakeProfileDomainDefault
 SET str=domo.GetParameter($$$IKPMATDEFAULTPROFILE,.dpin)
 WRITE "domain ",domId," DefaultProfile before SET=",dpin,!
 SET sc=domo.SetParameter($$$IKPMATDEFAULTPROFILE,"mydomainCMP")
 IF sc=1 {
 DO domo.GetParameter($$$IKPMATDEFAULTPROFILE,.dpout)
 WRITE "domain ",domId," DefaultProfile after SET=",dpout,! }
 ELSE {WRITE "SetParameter error",! }
CleanUp
 DO ##class(%iKnow.Domain).%DeleteId(domo.Id)
 WRITE "All done"

The following example defines a namespace custom matching profile (not specific to a domain), then assigns it as the
default matching profile for the mydomain domain. Note the 0: preface to the profile name in
SetParameter($$$IKPMATDEFAULTPROFILE,"0:nodomainCMP"):

#Include %IKPublic
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { SET domo=##class(%iKnow.Domain).Open(dname) }
 ELSE
 { SET domo=##class(%iKnow.Domain).%New(dname) DO domo.%Save()}
 SET domId=domo.Id
 WRITE "domain ",dname," has Id ",domId,!!
CreateProfile
 SET domprof=##class(%iKnow.Matching.MatchingProfile).%New(0,"nodomainCMP")
 WRITE "profile Id=",domprof.ProfileId,!
 WRITE "profile domain assignment=",domprof.DomainId,!
 WRITE "profile name=",domprof.Name,!
 WRITE "profile properties:",!
 WRITE "default MinimalMatchScore=",domprof.MinimalMatchScore,!
 SET domprof.MinimalMatchScore=.27
 WRITE "changed to MinimalMatchScore=",domprof.MinimalMatchScore,!!
 DO domprof.%Save()
MakeProfileDomainDefault
 SET str=domo.GetParameter($$$IKPMATDEFAULTPROFILE,.dpin)
 WRITE "domain ",domId," DefaultProfile before SET=",dpin,!
 SET sc=domo.SetParameter($$$IKPMATDEFAULTPROFILE,"0:nodomainCMP")
 IF sc=1 {
 DO domo.GetParameter($$$IKPMATDEFAULTPROFILE,.dpout)
 WRITE "domain ",domId," DefaultProfile after SET=",dpout,! }
 ELSE {WRITE "SetParameter error",! }
CleanUp
 DO ##class(%iKnow.Domain).%DeleteId(domo.Id)
 WRITE "All done"

You can also set individual domain parameters that influence matching operations.

Using InterSystems Natural Language Processing (NLP) 153

Defining a Matching Profile

17.4.2.1 Matching Single Relations

By default, the NLP matching algorithm skips dictionary terms that match a single relation entity. For example, if you have
a dictionary term "to", NLP does not attempt to match the entity "goes to" in the sentence "Pete goes to work". This default
optimizes matching performance when your dictionary primarily contains and targets concepts.

However, if your dictionary deliberately targets single relation elements, you can change this domain parameter default by
setting the MAT:SkipRelations ($$$IKPMATSKIPRELS) domain parameter to 0. This causes all entities to be matched
against all dictionary terms, regardless of the type of entity.

This option is set as a domain parameter — not a matching profile property — because this skipping step occurs at a time
when it is not yet known what the matched terms might be, and hence could not apply any dictionary-specific profiles.
Therefore, it is implemented as a domain parameter, ensuring it applies to all dictionaries within the domain.

17.4.2.2 Other Matching Operation Domain Parameters

Several of the settable domain parameters can influence matching operations: MAT:SkipRelations, MatchScoreMargin,
FullMatchOnly, and EntityLevelMatchOnly. If you change these domain parameters, any sources matched using a previous
domain parameter setting will have to be explicitly re-matched to reflect the new domain parameter value.

For further information on these domain parameters, refer to the Domain Parameters appendix to this manual.

154 Using InterSystems Natural Language Processing (NLP)

Smart Matching: Using a Dictionary

18
User Interfaces

The NLP technology does not have a default user interface. This chapter describes a few sample user interfaces provided
with NLP. These can provide a convenient starting point when developing a query interface specific to your use of NLP.

These sample user interfaces are found in the %iKnow.UI package, and are implemented as Zen pages, as described in the
InterSystems Class Reference.

18.1 How to Display NLP User Interfaces
1. from the InterSystems IRIS Data Platform™ cube, access Studio.

2. from the File drop-down menu, select Change Namespace. Select the %SYS namespace. Click OK.

3. from the File drop-down menu, select Open.

4. from the Open window, make sure that Include System Items is checked. Then select %iKnow->UI->and the desired
user interface. Click Open. The source code for the user interface appears in the Class Editor (the main Studio window).

5. click the View Web Page icon (the planet Earth icon). The user interface displays in your default browser. (Note that
abstract classes cannot be displayed.)

For further details, refer to the Using Studio manual.

18.2 Abstract Portal
This is the superclass for all other portals and pages in the %iKnow.UI package. It groups a lot of reusable materials such
as handling of domain ID, the "selected" source ID, metadata filters and paging for NLP query-driven tables and groups.
It is abstract, and cannot be run by itself, but should not impose restrictions on subclasses or component names, as long as
the corresponding panes (optDomainPane, txtTermPane, optSourcePane and filterPane) are used.

The %iKnow.UI.AbstractPortal class has five subclasses that fall into two types:

• The Loading Wizard, which provides a source file management interface.

• The query portal interfaces, which provide different displays of source data, showing NLP indexing and dictionary
matching.

Using InterSystems Natural Language Processing (NLP) 155

18.3 Abstract Source Viewer
This class extends the AbstractPortal superclass. It contains the ProcessInput() and DeleteCurrentVirtualSource()
methods. It is abstract, and cannot be run by itself.

18.4 Loading Wizard
A management and maintenance interface that allows a user to easily choose (or manage) Domain and Configuration objects
and then load files from a filesystem directly into a domain using %iKnow.Source.File.Lister. It also provides functionality
to load metadata values from a CSV (comma-separated values) file with rows corresponding to files previously loaded
through the File Lister. This operation automatically creates previously nonexistent metadata fields on the fly.

For further details on Domain and Configuration objects, refer to the “Setting Up an NLP Environment” chapter. For
further details on listing and loading, refer to the “Loading Text Data into NLP” chapter.

18.5 Domain Explorer
This is a sample Zen page query display interface with broad application. It shows a wealth of information about the various
language elements identified by NLP, including entities, CRCs, CCs and paths, providing a contextual at-a-glance view of
what's in your data. The generic filters option allows for easily selecting subsets of a domain based on metadata criteria
and the summary option provides quick access to the contents of the sources themselves. This interface provides a sample
of how NLP Smart Indexing can be used to quickly overview and navigate a large set of documents.

The Domain Explorer offers straightforward examples of calling the different NLP Query APIs from Zen, including top
entities, similar entities, and related entities, with the frequency and spread for each.

The Domain Explorer supports the use of black lists.

For a full description of features, refer to Domain Explorer in the “Domain Architect” chapter of this book.

18.6 Basic Portal
This sample Zen page query display interface is a simplified version of the Domain Explorer. It displays entities and sources
only. It does not display CRCs, CCs and paths. It provides filtering and summary capabilities, but by default it shows the
full text of the source.

The Basic Portal supports the use of black lists.

18.7 Indexing Results
This sample Zen page query display interface looks at the Smart Indexing results for a single document to verify the cor-
rectness of the analysis done by the NLP analysis engine. It shows how NLP cuts up each sentence into a sequence of
concepts (bold and highlighted), relations (underlined), and non-relevants (italic). The page also shows a frequency-sorted

156 Using InterSystems Natural Language Processing (NLP)

User Interfaces

list of detected Concepts and CRCs. This page provides an option for loading input manually. This page offers an example
of how %iKnow.Queries.SentenceAPI.GetParts() can be used for custom highlighting.

For a full description of features, refer to Indexing Results in the “Domain Architect” chapter of this book.

For definitions of concepts, relations, CRCs, and non-relevants, refer to the “Conceptual Overview” chapter.

18.8 Matching Results
This sample Zen page query display interface gives for each document an overview of the different matching results in the
document. It allows for easy browsing through match results against a dictionary and allows you to display the details of
each individual match. It uses %iKnow.Matching.MatchingAPI.GetHighlightedSentences() to display the text with
dictionary matches highlighted in color, and %iKnow.Matching.MatchingAPI.GetMatchElements() to display the details
of a specific match including the dictionary name, its item and term, the match score, type of match and the entity matched.
This interface provides a sample of how NLP Smart Matching can be used to combine predefined information with Smart
Indexing results.

For further details on matching, refer to the “Smart Matching: Using a Dictionary” chapter.

Using InterSystems Natural Language Processing (NLP) 157

Matching Results

19
IRIS Natural Language Processing (NLP)
Tools

The primary NLP interface for creating a domain and populating it with data is the Domain Architect. The principal interface
for analyzing NLP data is through APIs containing class object methods and properties which may be invoked from
ObjectScript programs. The NLP tools described in this chapter are meant to assist in maintaining NLP functionality and
in testing and examining NLP data. All NLP functionality provided here is also available using the iKnow APIs.

The NLP tools described in this chapter are:

• Shell Interface

• Data Upgrade Utility

19.1 NLP Shell Interface
The IRIS Natural Language Processing Shell can be used to return information about existing domains and indexed sources.

All NLP operations occur within a namespace. Therefore, before invoking the NLP Shell, you should specify the desired
namespace using the ZNSPACE command.

From the Terminal you can activate the NLP Shell interface as follows:

USER>DO $System.iKnow.Shell()

This returns the NLP Shell prompt. Typing ? at the NLP Shell prompt displays a list of the NLP Shell commands. Typing
an NLP Shell command followed by space and a ? displays information about that command.

The NLP Shell commands and options are case-sensitive and must be specified in all lowercase letters.

19.1.1 List, Show, and Summarize Sources

The following NLP Shell example makes use of an existing domain named “mydomain” in the current namespace. The
domain “mydomain” contains 100 sources. The use domain mydomain command specifies using “mydomain”, making
it the current domain for the NLP Shell. The list source command lists the sources in the current domain. By default,
a list command lists the first page, with a page size of ten items. To list additional pages, you can specify the > command,
as shown in this example. To change the page size to 20 items, specify use pagesize 20.

Using InterSystems Natural Language Processing (NLP) 159

The show source 92 command lists the contents of source 92, broken into sentences. It lists the first page of 10 sentences;
you can use the > command to list additional pages of sentences. The text of each sentence is prefaced by its sentence Id,
and is followed by a boolean indicating whether the Shell had to truncate the displayed sentence text. (For the purpose of
this example, I have added line wraps to the sentence texts.) The show summary 92 6 command summarizes the contents
of source 92 to 6 sentences, and displays these 6 sentences. If the summary number is larger than the number of sentences
in the source, show summary displays all of the sentences in the source.

USER>DO $System.iKnow.Shell()

Welcome to the iKnow shell
Type '?' for help
Type 'quit' to exit

iKnow> use domain mydomain
Current domain: mydomain (1)
iKnow> list source
 srcId externalId
 100 :SQL:Accident:96
 99 :SQL:Accident:98
 98 :SQL:Accident:94
 97 :SQL:Accident:100
 96 :SQL:Accident:80
 95 :SQL:Accident:99
 94 :SQL:Accident:95
 93 :SQL:Accident:88
 92 :SQL:Accident:97
 91 :SQL:Incident:90
iKnow> >
 srcId externalId
 90 :SQL:Accident:93
 89 :SQL:Accident:92
 88 :SQL:Accident:91
 87 :SQL:Accident:85
 86 :SQL:Accident:86
 85 :SQL:Accident:89
 84 :SQL:Accident:87
 83 :SQL:Accident:83
 82 :SQL:Accident:78
 81 :SQL:Accident:82
iKnow> show source 92
 sentId sentenceValue
sentenceIsTruncated
 5090 On March 7, 2001, about 1500 Alaska standard time, a wheel/ski equipped
 Cessna 180 airplane, N9383C, sustained substantial damage during takeoff from
 a snow-covered area at Ophir, Alaska. 0
 5091 The airplane was being operated as a visual flight rules (VFR) cross-country
 personal flight to McGrath, Alaska, when the accident occurred. 0
 5092 The airplane was operated by the pilot. 0
 5093 The commercial certificated pilot, and the sole passenger, were not injured. 0
 5094 Visual meteorological conditions prevailed. 0
 5095 During a telephone conversation with the National Transportation Safety Board
 (NTSB) investigator-in-charge (IIC), on March 8, 2001, the pilot reported he
 landed near Ophir earlier in the day. 0
 5096 When he was planning to depart, the surface of the snow had become crusty. 0
 5097 The pilot said he began a takeoff run toward the south, but the airplane
 did not become airborne until it was within about 50 yards from several trees. 0
 5098 During the initial climb, the left horizontal stabilizer collided with a
 spruce tree about 25 feet above the ground. 0
 5099 The airplane began a descending left turn toward the ground, and collided
 with several trees while the pilot was making an emergency landing. 0
iKnow> show summary 92 6
 sentId sentenceValue
sentenceIsTruncated
 5090 On March 7, 2001, about 1500 Alaska standard time, a wheel/ski equipped
 Cessna 180 airplane, N9383C, sustained substantial damage during takeoff from
 a snow-covered area at Ophir, Alaska. 0
 5091 The airplane was being operated as a visual flight rules (VFR) cross-country
 personal flight to McGrath, Alaska, when the accident occurred. 0
 5095 During a telephone conversation with the National Transportation Safety Board
 (NTSB) investigator-in-charge (IIC), on March 8, 2001, the pilot reported he
 landed near Ophir earlier in the day.
 5097 The pilot said he began a takeoff run toward the south, but the airplane
 did not become airborne until it was within about 50 yards from several trees. 0
 5099 The airplane began a descending left turn toward the ground, and collided
 with several trees while the pilot was making an emergency landing. 0
 5100 The airplane received damage to the left main landing gear, the wings,
 and the left stabilizer. 0
iKnow> quit
Bye bye

USER>

160 Using InterSystems Natural Language Processing (NLP)

IRIS Natural Language Processing (NLP) Tools

19.1.2 Filter Sources

The following NLP Shell example makes use of an existing domain named “mydomain” in the current namespace. The
domain “mydomain” contains 100 sources. The use domain mydomain command specifies using “mydomain”, making
it the current domain for the NLP Shell. The list source command lists the first 10 sources in the current domain. The
filter source 92 94 97 as myfilter command defines a filter named “myfilter” which filters out all sources
except those specified by source Id. The use filter myfilter command establishes “myfilter” as the current filter.
Now when the NLP Shell issues a list source command, it applies “myfilter” and lists only the three sources specified
in “myfilter”:

USER>DO $System.iKnow.Shell()

Welcome to the iKnow shell
Type '?' for help
Type 'quit' to exit

iKnow> use domain mydomain
Current domain: mydomain (1)
iKnow> list source
 srcId externalId
 100 :SQL:Accident:96
 99 :SQL:Accident:98
 98 :SQL:Accident:94
 97 :SQL:Accident:100
 96 :SQL:Accident:80
 95 :SQL:Accident:99
 94 :SQL:Accident:95
 93 :SQL:Accident:88
 92 :SQL:Accident:97
 91 :SQL:Incident:90
iKnow> filter source 92 94 97 as myfilter
iKnow> use filter myfilter
Current filter: myfilter

iKnow> list source
 srcId externalId
 97 :SQL:Accident:100
 94 :SQL:Accident:95
 92 :SQL:Accident:97
iKnow> quit
Bye bye

USER>

After a filter has been applied, a subsequent use filter filtername replaces the current filter with the new filter.
To disable a filter, specify use filter 0.

19.2 NLP Data Upgrade Utility
Each version of the NLP data structures is assigned a system version number. Each NLP domain is assigned a Version
property value. All new domains are created with the same Version property as the current system version. Therefore, these
two integer values are usually the same.

• When you update to a newer version of InterSystems IRIS Data Platform™, the NLP data structures system version
increments if NLP indexing has changed. Therefore, updating to a newer version of InterSystems IRIS does not neces-
sarily increment the NLP data structures system version.

• When you create a domain, it always takes the current data structures system version as its Version property value.
Therefore, existing domains created under an earlier system version have the Version property value of that earlier
system version.

The initial InterSystems IRIS version number is 5. Earlier version numbers may be present if you port existing domains to
InterSystems IRIS.

Using InterSystems Natural Language Processing (NLP) 161

NLP Data Upgrade Utility

You can use the GetCurrentSystemVersion() method of the %iKnow.Domain class to determine the NLP data structures
system version for the current InterSystems IRIS instance. You can use the GetAllDomains query to list all domains with
their domain Version numbers, as shown in the Listing All Domains section of the “Setting Up the NLP Environment”
chapter.

If the NLP data structures system version does not match the domain Version, these older NLP domains cannot take
advantage of the new NLP features and performance improvements introduced with this new system version. Older domains
will remain operational, but cannot take advantage of new NLP data structure features until you upgrade the domain.
Upgrading a domain increments its Version property. This upgrade operation requires the automatic re-indexing of the
domain data. It does not require access to the original source texts. Each domain must be upgraded individually.

To upgrade a domain, use the UpgradeDomain() method of the %iKnow.Utils.UpgradeUtils class. Further details are provided
in the InterSystems Class Reference documentation.

Note that the re-indexing that occurs when you upgrade a domain changes the domain Id, but does not change the domain
name. Thus upgrading a domain may, in some cases, require changes to programs that reference the domain by a specific
domain Id integer. For this reason, a domain should always be referenced by its Id property (or domain name). Coding
practices that reference a domain by a literal integer Id value should be avoided.

162 Using InterSystems Natural Language Processing (NLP)

IRIS Natural Language Processing (NLP) Tools

20
iKnow Web Services

The %iKnow package provides web service classes that execute NLP queries. This chapter provides an overview of these
classes and describes how to use them. It discusses the following topics:

• Available NLP web services

• How to use an NLP web service

• Example

• Comparison of NLP web services to the primary APIs

• Additional sources of information

20.1 Available Web Services
NLP provides the following web service classes:

• %iKnow.Queries.CcWSAPI — provides web methods that you can use to get information about concept-concept (CC)
pairs. These web methods are equivalent to the methods in the %iKnow.Queries.CcAPI class.

• %iKnow.Queries.CrcWSAPI — provides web methods that you can use to get information about Concept-Relation-
Concept (CRC) triples. These web methods are equivalent to the methods in the %iKnow.Queries.CrcAPI class.

• %iKnow.Queries.EntityWSAPI — provides web methods that you can use to get information about entities. These web
methods are equivalent to the methods in the %iKnow.Queries.EntityAPI class.

• %iKnow.Queries.EquivWSAPI — provides web methods that you can use to manage equivalences. These web methods
are equivalent to the methods in the %iKnow.Queries.EquivAPI class.

• %iKnow.Queries.MetadataWSAPI — provides web methods that you can use to manage and get information about
source metadata. These web methods are equivalent to the methods in the %iKnow.Queries.MetadataAPI class.

• %iKnow.Queries.PathWSAPI — provides web methods that you can use to get information about paths. These web
methods are equivalent to the methods in the %iKnow.Queries.PathAPI class.

• %iKnow.Queries.SentenceWSAPI — provides web methods that you can use to get information about sentences. These
web methods are equivalent to the methods in the %iKnow.Queries.SentenceAPI class.

• %iKnow.Queries.SourceWSAPI — provides web methods that you can use to get information about sources. These web
methods are equivalent to the methods in the %iKnow.Queries.SourceAPI class.

Using InterSystems Natural Language Processing (NLP) 163

The %iKnow.Queries package also contains classes that the compiler generated when these classes were compiled. For
example, when the compiler compiled the class %iKnow.Queries.CcWSAPI, it generated the classes in the
%iKnow.Queries.CcWSAPI package. These generated classes are not intended for direct use.

20.2 Using an NLP Web Service
To use a web service, you create and use a web client that communicates with it. To do so for an NLP web service, you
use the same procedure as with any other web service:

1. Create a web client that can communicate with the web service. Typically, to do so, you generate the web client using
a tool provided by the client technology and you provide the WSDL of the web service as input. This process generates
a set of client classes.

Note that for an InterSystems IRIS Data Platform™ web service, the WSDL is available at the following URL:

http://hostname:port/csp/namespace/web_service_class.cls?WSDL

Where:

• hostname is the server on which InterSystems IRIS is running.

• port is the port on which the web server is running.

• namespace is the namespace name.

• web_service_class is the full package and class name of the web service with .cls at the end.

For example, for the class %iKnow.Queries.EntityWSAPI, use %25iKnow.Queries.EntityWSAPI.cls

Important: Be sure to replace the leading percent sign of the package with the URL escape sequence %25 as
shown here.

For example:

http://localhost:52773/csp/samples/%25iKnow.Queries.EntityWSAPI.cls?WSDL

2. Rather than editing the generated client classes, create an additional class or routine that uses them. The details depend
on the technology.

In InterSystems IRIS, to use a web client, you create an instance of the web client class and then invoke its instance
methods. See the following example.

20.3 Example
For demonstration purposes, let us generate and use an InterSystems IRIS web client to work with an NLP web service on
the same machine. To do this in the SAMPLES namespace:

1. In Studio, click Tools > Add-ins > SOAP Wizard.

2. On the first screen, click URL.

3. Type the following URL:

http://localhost:52773/csp/samples/%25iKnow.Queries.EntityWSAPI.CLS?WSDL

164 Using InterSystems Natural Language Processing (NLP)

iKnow Web Services

If needed, replace 52773 with the port that your web server uses for this installation of InterSystems IRIS.

4. Click Next.

5. For Proxy Class Package, type a package name such as MyClient

6. Click Next twice.

The wizard generates and compiles the classes and displays a list of these classes.

This process generates the class MyClient.iKnow.Queries.EntityWSAPISoap. This class defines a set of
methods, one for each web method defined in the web service on which this client is based. Each of these methods
looks like this (with illegal line breaks added here):

Method GetByFilter(domainid As %Integer, filter As %String, filtermode As %Integer, enttype As
%Integer,
blackListIds As
%ListOfDataTypes(ELEMENTTYPE="%String",XMLITEMNAME="blackListIdsItem",XMLNAME="blackListIds"))
As %XML.DataSet [Final, ProcedureBlock = 1, SoapBindingStyle = document, SoapBodyUse = literal,
WebMethod]
{
 Quit ..WebMethod("GetByFilter").

Invoke($this,"http://www.intersystems.com/iKnow/Queries/EntityWSAPI/%iKnow.Queries.EntityWSAPI.GetByFilter",

 .domainid,.filter,.filtermode,.enttype,.blackListIds)
}

The signature of this method is the same as for the corresponding method in the web service.

This process also generates a set of classes in the MyClient.iKnow.Queries.EntityWSAPISoap, which are not
for direct use.

7. Click Finish.

8. To use the generated client, enter the following in the Terminal in the SAMPLES namespace:

set client=##class(MyClient.iKnow.Queries.EntityWSAPISoap).%New()

This creates an instance of the client class, which can then communicate with the web service.

9. Execute methods of this class. For example:

write client.GetCountByDomain(2)

20.4 Comparison of NLP Web Services with Primary NLP
APIs
The primary NLP APIs use arguments that cannot be easily represented in SOAP messages, so the methods in NLP web
services have different signatures than do the methods in the primary NLP APIs. In particular, note the following differences:

• Instead of %Library.List, the web services (and their clients) use %Library.ListOfDataTypes. This means that to build a
list for a web service, you create an instance of %Library.ListOfDataTypes and then use its SetAt() method to add items.
You cannot use list functions such as $LISTBUILD with this instance.

• Instead of an instance of %iKnow.Filters.Filter, the web services (and their clients) use a string of the form returned by
the ToString() method of that class.

• For APIs that return complex results, rather than returning results by reference as a multidimensional array, the web
services (and their clients) return an instance of %XML.DataSet.

Using InterSystems Natural Language Processing (NLP) 165

Comparison of NLP Web Services with Primary NLP APIs

Important: This structure is supported only in .NET and in InterSystems products. Other web technologies do not
recognize this format.

20.5 See Also
For information on web services and clients in InterSystems IRIS, see Creating Web Services and Web Clients.

166 Using InterSystems Natural Language Processing (NLP)

iKnow Web Services

21
KPIs and Dashboards

InterSystems IRIS Data Platform™ dashboard technology enables you to create web-based dashboards for your end users.
Among other items, dashboards can display KPIs (key performance indicators). In general, a KPI is a query that can be
executed and displayed on dashboards; when the dashboard is displayed, the query is executed.

This section describes how to create KPIs based on text analytics and display those KPIs on dashboards. It discusses the
following topics:

• KPI terminology

• Basic steps to define a KPI

• Available KPI filters

• How to override KPI properties

• Example KPI

• How to create a dashboard to display the KPI

• How to provide access to dashboards

• Additional sources of information

For information on using text analytics data within cubes, see the Advanced Modeling for InterSystems Business Intelligence.

21.1 KPI Terminology
In an InterSystems KPI, each row returned by the query is a separate series of the KPI. The following shows some of the
series of a KPI (as seen on the KPI test page, discussed later in this chapter). The series names are shown in the first column
of the KPI Values table.

Using InterSystems Natural Language Processing (NLP) 167

The name of a series (by default), is the value in the first column returned by the query.

A KPI also contains properties, each of which corresponds to a column in the returned data. In the previous example, the
KPI has five properties. When you define a KPI, you can override these property names and their order.

The KPI query can include parameters. These are called KPI filters, because they usually (but not always) filter the values
returned by the KPI. The KPI test page shows all the available KPI filters. The KPI mechanism automatically provides a
set of KPI filters for any KPI.

A KPI can also define actions, which execute custom code. When you add a KPI to a dashboard, you can add controls to
the dashboard to execute these actions. For any KPI based on a text analytics query that uses paging, that KPI defines the
Previous page and Next page actions.

21.2 Defining a KPI That Uses Text Analytics Query
To define a KPI that uses a text analytics query, do the following:

1. Create a class that extends one of the following classes:

• %iKnow.DeepSee.GenericKPI — Use this for most queries. You specify the query in the next step.

• %iKnow.DeepSee.SourceListFilterKPI — Use this to display information about the sources. In this case, the system
uses either the GetByEntities() or the GetByDomain() method of %iKnow.Queries.SourceAPI.

2. In this class, specify the text analytics domain to use. To do so, do either of the following:

• Specify the integer ID of the domain. To do so, override the IKDOMAINID class parameter and set it equal to the
integer ID of the text analytics domain.

• Specify the cube and NLP (natural language processing) measure that define the domain. To do so, override the
following class parameters:

– IKCUBENAME — Should equal the logical name of a cube.

168 Using InterSystems Natural Language Processing (NLP)

KPIs and Dashboards

– IKMEASURENAME — Should equal the local name of an NLP measure in the given cube.

This technique is possible only if you are using the cube integration. For information on this and defining NLP
measures, see the Advanced Modeling for InterSystems Business Intelligence.

3. Also override the following class parameters, depending on the superclass you used:

• IKPAGESIZE — Should equal the number of rows to display on any page. The default is 10.

Within dashboards, this affects the number of rows shown per page in a dashboard widget.

• IKQUERYCLASS — (Only if you subclass %iKnow.DeepSee.GenericKPI) Should equal the complete package and
class name of the API. Use one of the API classes that belong to the ObjectScript API. For example:
%iKnow.Queries.EntityAPI

• IKQUERYNAME — (Only if you subclass %iKnow.DeepSee.GenericKPI) Should equal the name of a method in
that class.

4. Add an XData block like the following to the class; this specifies the logical name and the display name for the KPI:

/// This XData definition defines the KPI.
XData KPI [XMLNamespace = "http://www.intersystems.com/deepsee/kpi"]
{
<kpi name="MyKPI" displayName="My KPI">
</kpi>
}

Specify the name and displayName values as needed. Note that name should not include any spaces or punctuation.
The value of displayName is localizable. You can omit displayName; by default, name is used.

Also see the later subsection “Overriding the KPI Properties.”

5. Compile the class.

Optionally use the KPI test page. (If you are currently viewing the class in Studio, click View > Web Page.)

To test the KPI, use the drop-down lists in the Filters section. Then click Submit Query.

These drop-down lists include all the available KPI filters; see the next subsection.

21.3 Available KPI Filters
The query of the KPI can include parameters; these are called KPI filters, because they usually (but not always) filter the
values returned by the KPI. For a KPI based on text analytics, the following KPI filters are automatically available:

• A meaningful subset of query parameters for the query that you are using (some query parameters, such as the text
analytics domain ID, are handled automatically and are not exposed)

• All public source metadata fields for this domain

• The NAMECOLUMN parameter, which lets you specify the column to use as the series name

Using InterSystems Natural Language Processing (NLP) 169

Available KPI Filters

Important: Many of the queries include a filtermode argument that you use to specify the statistical reprocessing to
perform after applying a filter; see “Filter Modes,” earlier in this book. When you use such queries directly,
the default filtermode is $$$FILTERONLY, which performs no reprocessing.

When you expose such queries as a KPI, the filtermode argument is always specified as $$$FILTERAL-
LANDSORT, so that the frequency and spread statistics are recomputed and the results are re-sorted.
Therefore you might see different results when using these queries as KPIs than when using them directly,
depending on how you specify filtermode.

21.4 Overriding the KPI Properties
By default, any KPI based on %iKnow.DeepSee.GenericKPI exposes all result columns in the same order as the query result,
with the same names as in the query result. You can modify the order, change names, and hide columns.

Each result column is a KPI property. Users see the following when they create dashboards:

• When a user adds a pivot table widget based on a KPI, the properties are shown in the same order and with the same
names as defined in the KPI, by default.

• When a user adds a scorecard widget based on a KPI, the user chooses the properties to display. The drop-down list
of choices contains the properties in the same order and with the same names as defined in the KPI.

• In both cases, users can modify the order of the KPI properties and change the titles displayed for them.

To modify the order of the KPI properties, change their names, and hide properties, add a set of <property> elements
within the XData block, as follows:

XData KPI [XMLNamespace = "http://www.intersystems.com/deepsee/kpi"]
{
<kpi name="MyKPI" displayName="My KPI">
 <property name="entity" displayName="Entity" />
 <property name="frequency" displayName="Frequency" />
 <property name="spread" displayName="Spread" />
</kpi>
}

For <property>, the value for name must exactly match the name of the field returned by the query. For displayName,
use the name that should be visible to users. List the <property> elements in the desired order, and list all the properties
that should be visible.

21.5 Example
The following shows an example KPI:

Class GIKNOW.TopEntitiesKPI Extends %iKnow.DeepSee.GenericKPI
{

Parameter IKDOMAINID = 1;

Parameter IKPAGESIZE As %Integer = 10;

Parameter IKQUERYCLASS = "%iKnow.Queries.EntityAPI";

Parameter IKQUERYNAME = "GetTop";

/// This XData definition defines the KPI.
XData KPI [XMLNamespace = "http://www.intersystems.com/deepsee/kpi"]
{
<kpi name="TopEntities" displayName="Top Entities in text analytics domain 1" >

170 Using InterSystems Natural Language Processing (NLP)

KPIs and Dashboards

<property name="resultNumber" displayName="rank"/>
<property name="entity" displayName="entity"/>
<property name="entUniId" displayName="Id"/>
<property name="frequency" displayName="frequency"/>
<property name="spread" displayName="spread"/>
</kpi>
}

}

For another example, see “Example Dashboard with KPI,” in the next section.

21.6 Creating a Dashboard to Display the KPI
To make a KPI available to users, you add it to a dashboard. Users can then access the dashboard in various ways; see
“Providing Access to Dashboards,” later in this chapter.

• How to create a dashboard

• Changing the series name

• Configuring the properties

• Adding previous page and next page buttons

• Example dashboard

21.6.1 Creating Dashboards: Basics

The following instructions briefly explain how to create a simple dashboard that displays a KPI:

1. In the Management Portal, click Analytics > User Portal and then click View.

The system then displays the User Portal, which lists any existing public dashboards and pivot tables in this namespace.

2. Click Menu > New Dashboard.

The system displays a dialog box that prompts you for basic information about the new dashboard.

3. Type a value for Dashboard Name.

4. Optionally specify a value for Folder.

5. For Page Layout, click the third option (no workboxes).

6. Click OK.

The system creates, saves, and displays the dashboard, which is initially empty.

Using InterSystems Natural Language Processing (NLP) 171

Creating a Dashboard to Display the KPI

7. Add a widget to display a KPI. To do so:

a. Click Menu > Add New Widget....

b. In the left area, click an item to show a list of choices.

Select either a pivot table widget or a scorecard.

c. Click the type of the widget to use.

d.
On the Data Source tab, click the Search button next to Data source.

e. Click the name of the KPI.

f. Click OK.

g. If you chose a scorecard, see “Configuring the Properties,” later in this section.

h. Click OK to add this widget.

8. Resize the widget and click Menu > Save again.

9. For configuration options, see the next subsections.

The result might be as follows:

The last section of this chapter provides links to additional information.

21.6.2 Changing the Series Names

When you display a KPI in a pivot table widget, the series names are used as the names of the rows. By default, the series
names are taken from the first column of the returned values, which may not be useful in this scenario. For example, for
the following KPI, the first column is the result number:

172 Using InterSystems Natural Language Processing (NLP)

KPIs and Dashboards

To choose a different column to use as the series names, do the following:

1.
Click the Reconfigure button on the widget.

2. Click the Controls tab.

3. Click the Add button to the right of the table, which is initially empty.

4. For Type, select Hidden.

5. For Action, select Filter.

6. For Filter, select Series name column.

7. For Default Value, click the Add button .

8. Select the name of the column to use (for example, entity for the KPI shown here).

9. Click OK to add the default value.

10. Click OK to add the control.

11. Click OK to complete the widget reconfiguration.

Now the row names have changed. For example:

21.6.3 Configuring the Properties

When you display a KPI in a widget, you may need to reconfigure the properties shown in that widget:

• For a scorecard widget, you must configure the properties. No columns are shown by default.

• For a pivot table widget, you might need to configure the properties. All columns are shown by default.

To configure the properties:

Using InterSystems Natural Language Processing (NLP) 173

Creating a Dashboard to Display the KPI

1.
Click the Reconfigure button on the widget.

2. Click the Data Properties tab.

On this tab, you specify the properties (or columns) of the KPI.

3. To configure a property, click the Add button .

4. For Data Value, select a value from the drop-down list; this lists the result columns of the KPI.

5. Optionally type a caption into Label.

6. Optionally type a format string into Format. By default, numeric values are shown with the thousands separator used
in your locale. To format the numbers without the thousands separator, type # into Format.

7. Click OK.

After you have added each result column of the KPI, the dialog box should looks something like this, depending on
your KPI:

8. Click OK to complete the reconfiguration.

21.6.4 Adding Previous Page and Next Page Buttons

For any KPI based on a query that uses paging, that KPI defines the Previous page and Next page actions. You can configure
the widget to include buttons that execute these actions. To do so:

1.
Click the Reconfigure button on the widget.

2. Click the Controls tab.

3. Add a Previous Page buttons to this widget, as follows

a. Click the Add button to the right of the table, which is initially empty.

The system displays a dialog box where you specify the control.

b. For Action, select Previous page.

c. For Control Label or Icon, type Previous Page

d. Click OK to add the control.

174 Using InterSystems Natural Language Processing (NLP)

KPIs and Dashboards

Use similar steps to add the Next Page button.

Now the dialog box looks like this:

4. Click OK to complete the widget reconfiguration.

Now the widget includes buttons like this:

21.6.5 Example Dashboard with KPI

The SAMPLES namespace provides an example dashboard that displays a KPI that uses text analytics. To see this dashboard:

1. In the Management Portal, access the SAMPLES namespace.

2. Click Analytics > User Portal and then click View.

The system then displays the User Portal, which lists any existing public dashboards and pivot tables in this namespace.

3. Click Aviation event reports.

The system displays the requested dashboard.

In this dashboard, find the widget Top concepts in Event Reports. This widget appears as follows:

Using InterSystems Natural Language Processing (NLP) 175

Creating a Dashboard to Display the KPI

This widget displays the KPI defined in the class Aviation.KPI.TopConcepts.

21.7 Providing Access to Dashboards
You can provide dashboards to your users in various ways:

• Your application can provide direct links to dashboards.

• You can provide a user portal that has the ability to display dashboards. You can use the InterSystems User Portal or
create your own.

The InterSystems User Portal is intended for direct use by end users.

21.8 See Also
• For information on creating dashboards, see Creating Dashboards.

• For information on accessing dashboards from your application, see “Accessing Dashboards from Your Application”
in Implementing InterSystems Business Intelligence.

• For information on packaging dashboard definitions into classes, see “Packaging Analytics Elements into Classes”
in Implementing InterSystems Business Intelligence.

• For information on the InterSystems User Portal and dashboards, see the Using Dashboards and the User Portal.

176 Using InterSystems Natural Language Processing (NLP)

KPIs and Dashboards

22
Customizing NLP

You can customize how the NLP semantic analysis engine loads and lists source texts on InterSystems IRIS Data Platform™.
The following types of customization are supported:

• Lister. By default, NLP provides several listers that correspond to common sources of data. You can create a custom
lister appropriate for your data.

• Processor. By default, NLP uses the processor that corresponds to the lister. You can create a custom processor and
associate it with your custom lister, or you can associate an existing processor to your custom lister.

• Converter. A Converter is an object that can transform complex input text into the plain text expected by the NLP
engine. For example, a Converter can extract plain text from a PDF or RTF document, or select specific nodes from
an XML document. By default, NLP does not use a converter. You can create a custom converter and specify it in the
Lister SetConverter() or Init() method.

A Lister can optionally specify its Configuration, Processor, and Converter. You can specify these using the SetConfig(),
SetProcessor(), and SetConverter() methods, or specify all three using the Init() method.

The following example shows how to specify a custom processor and/or a custom converter using the optional Lister Init()
method. You can specify an empty string ("") for any of the Init() method parameter to take the default for the specified
Lister.

 SET flister=##class(%iKnow.Source.File.Lister).%New(domId)
 DO flister.Init(configuration,myprocessor,processorparams,myconverter,converterparams)

22.1 Custom Lister
NLP provides a base lister class and five subclasses containing listers specific to different types of input sources.

In order to implement a custom lister you begin with the base Lister class, %iKnow.Source.Lister, and override several of
its defaults.

Using InterSystems Natural Language Processing (NLP) 177

22.1.1 Lister name

In order to be able to work with the lister, the lister needs to specify the format in which the external id for each source is
presented. The external id for a lister consists of the lister name and the full reference. The full reference consists of the
groupName and the localRef. An external id is shown in the following example:

:MYLISTER:groupname:localref

In this example, MYLISTER is the lister name alias. If you don't provide an alias, the full classname of the lister class is
used. To determine the alias for your lister, use the GetAlias() method.

A lister name alias must be unique within the current namespace. If you specify a lister name alias that already exists, NLP
generates a $$$IKListerAliasInUse error.

22.1.2 SplitFullRef() and BuildFullRef()

You must specify a SplitFullRef() instance method for your custom lister. This method is used to extract the groupName
and the localRef from the fullRef string. Its results are supplied to the SplitExtId class method. Assume your lister has an
external id format like this: :MYLISTER:groupname:localref.

In this simple example, fullRef consists of the string groupname:localref, so the groupName is $PIECE(fullRef,":",1)
and localRef is $PIECE(fullRef,":",2). Note that this is a very simple example; it does not work if the groupName
or localRef parts contain ":" characters.

You must specify a BuildFullRef() instance method for your custom lister. This method is used to combine the groupName
and the localRef to form the fullRef string. Its results are supplied to the BuildExtId class method.

22.1.3 Default Processor

A Processor is a class that takes as input the list populated by the Lister, reads the corresponding source text, and directs
the source data to the NLP engine for indexing. It can, optionally, pass this source data through a Converter.

NLP Processors are subclasses of the %iKnow.Source.Processor class. Each processor subclass is designed to read sources
of a specific type, such as the %iKnow.Source.File.Processor which reads files from a directory.

Every Lister has a default processor that is capable of processing the sources from that lister. By default, it uses a class
called Processor in the same package as the Lister. If there is no processor corresponding to the specified lister, or if you
wish to use the generic %iKnow.Source.Temp.Processor, you should override the DefaultProcessor() method and specify
the desired default processor.

22.1.4 Expand List

The ExpandList() method is responsible for listing all sources that need to be indexed. This method should be overridden
by user-defined subclasses that implement how to scan through the particular type of source location or structures for your
custom Lister. The parameters for this method are the same as those used when invoking the corresponding
AddListToBatch() method. The parameters may differ, depending on the Lister that you implement. Make sure that the
Lister-specific ExpandList() parameters are documented, so that a user knows which parameters to supply to the
lister.AddListToBatch() method or the loader.ProcessList() method.

The ExpandList() parameters are as follows (in order):

• Path: the location where the sources are located, specified as a string.

• Extensions: one or more file extension suffixes that identify which sources are to be listed. Specified as a %List of
strings.

178 Using InterSystems Natural Language Processing (NLP)

Customizing NLP

• Recursive: a boolean value that specifies whether to search subdirectories of the path for sources.

• Filter: a string specifying a filter used to limit which sources are to be listed.

For further details, refer to Lister Parameters in the chapter “Loading Text Data into NLP”.

22.2 Custom Processor
A processor can either copy the complete source into a temporary global for NLP processing, or it can store a reference to
the source in a temporary global. These temporary globals are used by the NLP engine to index the text and store the results
in NLP globals.

If a Lister does not have a corresponding processor, the %iKnow.Source.Temp.Processor is the default processor. It copies
the complete text of each source into a temporary global. The other supplied processors store a reference to the source in
a temporary global. You can use ..StoreTemp to specify copying the source, or ..StoreRef to specify storing a reference to
the source.

22.2.1 Metadata

While listing sources, the Lister is capable of extracting metadata that should be added to the sources. In order to let the
system know which metadata the Lister will provide, you can call the function ..RegisterMetadataKeys(metaFieldNames).
The metaFieldNames parameter is a %List containing the keys for the metadata key-value pairs. After that you can provide
the metadata values by using the function ..SetMetadataValues(ref, metaValues). the metaValues parameter is a %List
containing the values for the metadata key-value pairs. They should appear in the same order as the keys are listed.

After establishing the metadata in the Lister, you can access this metadata in your processor by implement the
GetMetadataKeys() method. This method should return a %List of keys from the metadata key-value pairs. In the
FetchSource() method the processor can then set the appropriate values for calling ..SetCurrentMetadataValues(values),
where values is a %List of the values of the metadata key-value pairs, in the same order as the keys were reported.

22.3 Custom Converter
A Converter converts source text to plain text by removing tags from the source text. Tags are non-content elements used
to format the text for display or printing. For example, you might use a converter to remove tags from RTF (Microsoft Rich
Text Format) files, or to extract plain text from a PDF file. A converter is invoked by the Lister and applied prior to
indexing the source text. Depending on the format of your source documents, the use of a source converter is an optional
step.

NLP provides one sample converter, the subclass %iKnow.Source.Converter.Html, which you can use to remove HTML
tags from source text. This is a basic HTML converter; you may need to customize your instance of this converter to support
full conversion of your HTML source texts.

In order to implement a custom Converter you need to override several methods from the base converter class
%iKnow.Source.Converter.

22.3.1 %OnNew

The user-provided %OnNew() method is invoked by the %New() method. It takes as its parameter a %List of any
parameters that the Converter requires.

Using InterSystems Natural Language Processing (NLP) 179

Custom Processor

22.3.2 Buffer String

The BufferString() method will be called as many times as needed to buffer the complete document into the Converter.
Each call will provide a chunk of text by means of the data parameter (max 32K). When no more data is to be buffered,
the Convert() method will be called.

22.3.3 Convert

The Convert() method is responsible for processing the buffered content and converting the data into plain text (for
example, RTF file conversion), or extracting the required data from the buffer (for example, node extraction from xml).
The converted or extracted data will need to be buffered, as the converted data can be larger than 32K.

22.3.4 Next Converted Part

The NextConvertedPart() method is called after the Convert() method. This method must return the converted data in
chunks of 32K. Every time this method is called, you need to return the next chunk. If no more data is available, this method
should return the empty string ("") to indicate that it has finished extracting the converted data.

180 Using InterSystems Natural Language Processing (NLP)

Customizing NLP

23
Language Identification

This chapter describes how to configure and use Automatic Language Identification (ALI), which is applied at the sentence
level. It also describes a few language-specific issues.

23.1 Configuring Automatic Language Identification
An NLP Configuration establishes the language environment for source document content. A Configuration is independent
of any specified set of source data. You can either define a Configuration, or take the default Configuration. If you do not
specify a Configuration, the default is English-only, with no automatic language identification.

A configuration defines the following language options:

• What language(s) the source documents contain, and therefore which languages to test for and which language models
to apply. The available options are Dutch (nl), English (en), French (fr), German (de), Japanese (ja), Portuguese (pt),
Russian (ru), Spanish (es), Swedish (sv), and Ukrainian (uk). Specify a language using the ISO two-letter code. You
can specify multiple languages as an InterSystems IRIS list structure.

• When specifying more than one language, specify a boolean value to activate automatic language identification.

The following example creates a configuration that assumes all source texts will be in English or French, and supports
automatic language identification:

 SET myconfig="EnglishFrench"
 IF ##class(%iKnow.Configuration).Exists(myconfig) {
 SET cfg=##class(%iKnow.Configuration).Open(myconfig)
 WRITE "Opened existing configuration ",myconfig,!
 }
 ELSE {
 SET cfg=##class(%iKnow.Configuration).%New(myconfig,1,$LISTBUILD("en","fr"),"",1)
 DO cfg.%Save()
 IF ##class(%iKnow.Configuration).Exists(myconfig)
 {WRITE "Configuration ",myconfig," now exists",! }
 ELSE {WRITE "Configuration creation error" QUIT }
 }
 SET cfgId=cfg.Id
 WRITE "with configuration ID ",cfgId,!
 SET rnd=$RANDOM(2)
 IF rnd {
 SET stat=##class(%iKnow.Configuration).%DeleteId(cfgId)
 IF stat {WRITE "Deleted the ",myconfig," configuration" }
 }
 ELSE {WRITE "No delete this time",! }

Using InterSystems Natural Language Processing (NLP) 181

23.2 Using Automatic Language Identification
NLP performs automatic language identification on a per-sentence basis. When the current configuration has activated
automatic language identification, NLP tests each sentence in each source text to determine which of the languages specified
in the Configuration is the language used in that sentence. This identification is a statistical probability. This has the following
consequences:

• If a sentence contains text in more than one language specified in the Configuration, NLP will assign the sentence to
what it determines is the predominant language of the sentence.

• If a sentence is in a language not specified in the Configuration (or a language not supported by NLP), NLP will assign
the sentence to one of the specified Configuration languages.

NLP subsequently uses this language determination in determining CRCs and other NLP analysis.

Thus, source texts and sentences within a source text can be in different languages. NLP automatically determines which
language model to apply. Automatic language identification also assigns a confidence level in its language identification
as an integer indicating a percentage. These range from 100 (complete confidence) to 0 (indeterminate). If automatic language
identification is not active, all sentences are assigned a confidence level of 0.

23.2.1 Language Identification Queries

Refer to A Note on Program Examples for details on the coding and data used in the examples in this book.

The following example uses GetTopLanguage() to identify the language for a source and the degree of confidence in that
identification. Because language identification is performed on the sentence level, the language for the source is the result
of averaging the language identification confidence for the component sentences. This method returns the language as a
two character abbreviation (in this case, “en”). Note that totlangconf (the total of the language confidence for the sentences)
must be divided by numlangsent, not by numsent. These two sentence count numbers are usually, but not always, the same.
This is because a source may contain sentences for which no language can be determined.

Configuration
 SET myconfig="EnFr"
 IF ##class(%iKnow.Configuration).Exists(myconfig)
 {SET cfg=##class(%iKnow.Configuration).Open(myconfig) }
 ELSE {SET cfg=##class(%iKnow.Configuration).%New(myconfig,1,$LISTBUILD("en","fr"),"",1)
 DO cfg.%Save() }
 SET cfgId=cfg.Id
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET stat=flister.SetConfig(myconfig)
 IF stat '= 1 { WRITE "SetConfig error ",$System.Status.DisplayError(stat)
 QUIT }
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 10 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"

182 Using InterSystems Natural Language Processing (NLP)

Language Identification

 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
GetSources
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId)
 SET i=1
 WHILE $DATA(result(i)) {
 SET intId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET numsent = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 WRITE !,extId," has ",numsent," sentences",!
 SET srclang = ##class(%iKnow.Queries.SourceAPI).GetTopLanguage(domId,intId,.totlangconf,.numlangsent)

 WRITE "Source language is ",srclang,!,"with a confidence % of ",totlangconf/numlangsent,!!
 SET i=i+1
 }

The following example uses GetLanguage() to identify the language for each sentence in a source and the degree of con-
fidence in that identification. This method returns the language as a two character abbreviation (in this case, “en”) and the
confidence level as a percentage between 0 and 100. Note that the confidence level is rarely (if ever) 100%.

Configuration
 SET myconfig="EnFr"
 IF ##class(%iKnow.Configuration).Exists(myconfig)
 {SET cfg=##class(%iKnow.Configuration).Open(myconfig) }
 ELSE {SET cfg=##class(%iKnow.Configuration).%New(myconfig,1,$LISTBUILD("en","fr"),"",1)
 DO cfg.%Save() }
 SET cfgId=cfg.Id
DomainCreateOrOpen
 SET dname="mydomain"
 IF (##class(%iKnow.Domain).Exists(dname))
 { WRITE "The ",dname," domain already exists",!
 SET domoref=##class(%iKnow.Domain).Open(dname)
 GOTO DeleteOldData }
 ELSE
 { WRITE "The ",dname," domain does not exist",!
 SET domoref=##class(%iKnow.Domain).%New(dname)
 DO domoref.%Save()
 WRITE "Created the ",dname," domain with domain ID ",domoref.Id,!
 GOTO ListerAndLoader }
DeleteOldData
 SET stat=domoref.DropData()
 IF stat { WRITE "Deleted the data from the ",dname," domain",!!
 GOTO ListerAndLoader }
 ELSE { WRITE "DropData error ",$System.Status.DisplayError(stat)
 QUIT}
ListerAndLoader
 SET domId=domoref.Id
 SET flister=##class(%iKnow.Source.SQL.Lister).%New(domId)
 SET stat=flister.SetConfig(myconfig)
 IF stat '= 1 { WRITE "SetConfig error ",$System.Status.DisplayError(stat)
 QUIT }
 SET myloader=##class(%iKnow.Source.Loader).%New(domId)
QueryBuild
 SET myquery="SELECT Top 10 ID AS UniqueVal,Type,NarrativeFull FROM Aviation.Event"
 SET idfld="UniqueVal"
 SET grpfld="Type"
 SET dataflds=$LB("NarrativeFull")
UseLister
 SET stat=flister.AddListToBatch(myquery,idfld,grpfld,dataflds)
 IF stat '= 1 {WRITE "The lister failed: ",$System.Status.DisplayError(stat) QUIT }
UseLoader
 SET stat=myloader.ProcessBatch()
 IF stat '= 1 {WRITE "The loader failed: ",$System.Status.DisplayError(stat) QUIT }
GetOneSource
 DO ##class(%iKnow.Queries.SourceAPI).GetByDomain(.result,domId)
 FOR i=1:1:10 {
 IF $DATA(result(i)) {
 SET intId = $LISTGET(result(i),1)
 SET extId = $LISTGET(result(i),2)
 SET myconf=0
 SET numSentS = ##class(%iKnow.Queries.SentenceAPI).GetCountBySource(domId,result(i))
 WRITE !,extId," has ",numSentS," sentences",!
GetSentencesInSource
 SET sentStat=##class(%iKnow.Queries.SentenceAPI).GetBySource(.sent,domId,intId)
 IF sentStat=1 {
 SET i=1
 WHILE $DATA(sent(i)) {

Using InterSystems Natural Language Processing (NLP) 183

Using Automatic Language Identification

 SET sentnum=$LISTGET(sent(i),1)
 WRITE "sentence:",sentnum
 SET lang = ##class(%iKnow.Queries.SentenceAPI).GetLanguage(domId,sentnum,.myconf)
 WRITE " language:",lang," confidence:",myconf,!
 SET i=i+1
 }
 }
 }
 ELSE { WRITE !,"That's all folks!" }
 }

23.3 Overriding Automatic Language Identification
You can use the LanguageFieldName domain parameter to override Automatic Language Identification. If activated, this
parameter determines which language to apply by accessing a metadata field for each source. This metadata field contains
the ISO language code. If the metadata field data is present, Automatic Language Identification is overridden for that source.
If the metadata field is empty or invalid, Automatic Language Identification is used for that source. The LanguageFieldName
domain parameter is inactive by default. For further details, refer to the Domain Parameters appendix of this manual.

23.4 Language-Specific Issues
German: the German eszett (“ß”) character is normalized as “ss”. German commonly requires setting the EnableNgrams
domain parameter.

184 Using InterSystems Natural Language Processing (NLP)

Language Identification

A
Domain Parameters

This appendix lists the available domain parameters. Domain parameter names are case-sensitive. Each domain parameter
has a %IKPublic macro equivalent (for example, $$$IKPFULLMATCHONLY). The recommended programming practice
is to specify a domain parameter by its macro equivalent, not its parameter name. For information on setting domain
parameters, refer to “Defining an NLP Domain”.

A domain parameter can be defined for a specific domain, or can be defined “system-wide,” which means defined for all
current and future domains in the current namespace.

Domain parameters are divided into two groups, Basic and Advanced. Basic parameters are useful for customizing NLP
default behavior. Advanced parameters significantly change NLP behavior and performance, and should be used with
caution.

Using InterSystems Natural Language Processing (NLP) 185

Table I–1: Basic Domain Parameters

186 Using InterSystems Natural Language Processing (NLP)

Domain Parameters

$$$IKPDEFAULTCONFIG: A string specifying the
name of the NLP Configuration used for the domain.

DefaultConfig

By default, no Configuration is assigned to a domain;
this is indicated by returning the string DEFAULT.
You can specify the name of any Configuration
defined in the current namespace. The Configuration
must exist when you assign it to this parameter. If the
Configuration does not exist, this parameter remains
unchanged.The DefaultConfig value can be overridden
by SetConfig() or ProcessBatch().

$$$IKPENABLENGRAMS: A boolean parameter. If
set to 1, NLP generates n-grams for the domain.

EnableNgrams

n-Grams are used for Similarity entity matching within
words. If set to 0, NLP matches only parts, whole
words or the beginning letters of words. The default
is 0. At the domain level, you can only change the
EnableNgrams setting for an empty domain (a domain
the does not yet contain NLP data). At the
system-wide level, you can only change the
EnableNgrams setting if there are no domains
containing text data in the current namespace. n-Gram
matching greatly increases the size of the data stored
by NLP, and can have a significant performance
impact. It should only be enabled when required.You
should not use n-gram matching with most languages.
However, matching operations on German text often
requires n-gram matching.

$$$IKPIGNOREDUPLICATEEXTIDS: A boolean
parameter. If set to 1, NLP does not log an error if a

IgnoreDuplicateExtIds

source is loaded that has the same external Id as an
already-loaded source. 1 is the recommended setting
when loading sources from a location previously
loaded in order to include the new sources added
since the last load. The default is 0.

$$$IKPIGNOREEMPTYBATCH: A boolean
parameter. If set to 0, the Loader issues a

IgnoreEmptyBatch

$$$IKNothingToProcess error when a batch load is
specified that specifies no sources. If set to 1, the
Loader does not generate this error. The default is 0.

Using InterSystems Natural Language Processing (NLP) 187

Domain Parameters

$$$IKPMATDEFAULTPROFILE:This parameter takes
the name of a user-defined matching profile that you
wish to establish as the default for the domain. The
matching profile must exist when you assign it to this
parameter. If the user-defined matching profile is
defined as namespace-wide (not specific to a domain),
you must add a zero colon (0:) preface to the name.
For example, "0:NoDomainProfile". If you do not
set this parameter, the NLP default matching profile
is used as the domain default. For further details, refer
to Defining a Matching Profile in the “Smart Matching:
Using a Dictionary” chapter.

You can override the domain default matching profile
by specifying a custom matching profile in the
MatchSource() or MatchSources() methods.

MAT:DefaultProfile

$$$IKPMATSKIPRELATIONS: A boolean parameter
for dictionary matching. A value of 1 (the default)
specifies that only concepts, not relations, will be
matched during entity matching. (Relations are
matched during CRC and path matching operations.)
Skipping relation entity matching can significantly
improve performance. A value of 0 performs relation
entity matching.You should only set this parameter
to 0 if your dictionary includes single-entity terms that
are relations.

MAT:SkipRelations

188 Using InterSystems Natural Language Processing (NLP)

Domain Parameters

$$$IKPSORTFIELD: A boolean parameter. Every
NLP entity has two integer counts associated with it:
frequency (number of occurrences of an entity in all
sources) and spread (number of sources in which the
entity occurs). If set to 0, the NLP default is to sort by
frequency ($$$SORTBYFREQUENCY). If set to 1,
the NLP default is to sort by spread ($$$SORT-
BYSPREAD). The default is 0. At the domain level,
you can only change the SortField setting for an empty
domain (a domain the does not yet contain NLP data).
At the system-wide level, you can only change the
SortField setting if there are no domains containing
text data in the current namespace.

Alternatively, you can change this sort order domain-
wide by specifying a second parameter (sortField) to
the Create() or GetOrCreateId() method of the
%iKnow.Domain class. 0=sort by frequency (the
default). 1=sort by spread. The sort order default
should only be changed when required.You can only
change the sort order default for an empty domain (a
domain that does not yet contain NLP data).

In certain individual queries you can also specify sort
order ($$$SORTBYFREQUENCY or $$$SORT-
BYSPREAD) or use the current domain default
($$$SORTBYDOMAINDEFAULT).

SortField

$$$IKPSTATUS: A boolean parameter. If set to 1,
NLP displays detailed status information on the
progress of the source loading process. If set to 0,
NLP does not display this information. The default is
0.

Status

$$$IKPSTEMMING: A boolean parameter. If set to
1, NLP activates stemming on the domain. If set to 0,
NLP does not perform stemming. The default is 0.

Stemming

Using InterSystems Natural Language Processing (NLP) 189

Domain Parameters

Table I–2: Advanced Domain Parameters

190 Using InterSystems Natural Language Processing (NLP)

Domain Parameters

$$$IKPENTITYLEVELMATCHONLY: A boolean
parameter that is used to limit the types of match

EntityLevelMatchOnly

operations performed when matching against a
dictionary. By default NLP matches entities, CRCs,
paths, and sentences.You can set the this parameter
to limit matching to entities only. Note that this may
result in a much larger number of match results. The
default is 0. Changing this parameter affects any
subsequent match operations for this domain.
Therefore, sources already matched before you
changed this parameter must be explicitly re-matched
to reflect this change.

$$$IKPFULLMATCHONLY: A boolean parameter that
is used to limit the types of match operations

FullMatchOnly

performed when matching against a dictionary.You
can set this parameter to restrict matching to exact
matches only. When this option is set (1), partial
matches and disordered matches are ignored. The
default is 0. Changing this parameter affects any
subsequent match operations for this domain.
Therefore, sources already matched before you
changed this parameter must be explicitly re-matched
to reflect this change.

$$$IKPLANGUAGEFIELDNAME: A string that
specifies the name of a metadata field. When set to

LanguageFieldName

an existing metadata field that was populated during
source loading, NLP uses that metadata field’s value
(if set) as the language to be used when processing
the corresponding source. This option overrides
automatic language identification.The metadata field
value must be a two-letter ISO language code (see
$$$IKLANGUAGES) for a language that has been
specified in the current configuration object.

Using InterSystems Natural Language Processing (NLP) 191

Domain Parameters

$$$IKPMATSTANDARDIZEDFORM: To enable
standardized-form matching for a domain, set this
domain parameter to the desired standardization
function, as follows: SET
stat=domain.SetParameter("MAT:StandardizedForm","%Text").
Standardized-form matching supports matching
different forms of the same word in source text with
a single dictionary term, for example singular/plural
or verb forms, using the standardized form of the
dictionary term. Any dictionary terms created in such
a domain result in "standardized" dictionary elements,
which are at match-time compared to the standardized
forms of the entities in the sources. For the right
standardization algorithm to be used, it's important
dictionary terms are created with the right language
annotation (parameter in CreateDictionary()
methods) and sources are assigned the proper
language (either through selecting the appropriate
language model in a Configuration, or by using
Automatic Language Identification).

MAT:StandardizedForm

$$$IKPMETADATAAPI: A string that specifies which
metadata API class to use to extend
%iKnow.Queries.MetadataI. The default is
%iKnow.Queries.MetadataAPI.You can only change the
MetadataAPI setting for an empty domain (a domain
the does not yet contain NLP data).

MetadataAPI

$$$IKPMINTOPCONCEPTLENGTH: An integer that
specifies the smallest concept (fewest number of
characters) that a GetTop() query can return. This
parameter is used to filter meaninglessly short
concepts from the GetTop() result. The default is 3,
specifying that concepts that are 3 letters in length or
larger are returned by GetTop(). This minimum
character count is inclusive of spaces between words
and punctuation symbols in a concept.

QUERY:MinTopConceptLength

$$$IKPSIMPLEEXTIDS: A boolean parameter that is
used to specify the format for external IDs for sources.
If set to 0, NLP stores the full reference as the external
ID. If set to 1, NLP stores the local reference as the
external ID. The default is 0.You can only change
the SimpleExtIds setting for an empty domain (a domain
the does not yet contain NLP data).

SimpleExtIds

$$$IKPSKIPEXTIDCHECK: A boolean parameter that
specifies whether to check for duplicate external IDs.
If set to 1, NLP skips checking whether a duplicate
external ID already exists when loading sources. If
set to 0, NLP checks for duplicate external IDs. The
default is 0.

SkipExtIdCheck

192 Using InterSystems Natural Language Processing (NLP)

Domain Parameters

	Table of Contents
	About This Book
	1 Conceptual Overview
	1.1 A Simple Use Case
	1.2 What is NLP?
	1.2.1 What NLP Isn’t

	1.3 Logical Text Units Identified by NLP
	1.3.1 Sentences
	1.3.2 Entities
	1.3.3 CRCs and CCs
	1.3.4 Paths

	1.4 Smart Indexing
	1.5 Smart Matching

	2 NLP Implementation
	2.1 A Note on Program Examples
	2.2 A Note on %Persistent Object Methods
	2.3 A Note on %iKnow and %SYSTEM.iKnow
	2.4 Space Requirements and NLP Globals
	2.4.1 Batch Load Space Allocation

	2.5 Input Data
	2.5.1 File Formats
	2.5.2 SQL Record Format
	2.5.3 Text Normalization
	2.5.4 User-defined Source Normalization

	2.6 Output Structures
	2.7 Constants
	2.8 Error Codes

	3 Domain Architect
	3.1 Accessing Architect
	3.1.1 Enabling a Namespace

	3.2 Creating a Domain
	3.2.1 Opening a Domain
	3.2.2 Changing the Domain Name and Check Boxes
	3.2.3 Deleting a Domain

	3.3 Model Elements
	3.3.1 Domain Settings
	3.3.2 Metadata Fields
	3.3.3 Data Locations
	3.3.4 Blacklists
	3.3.5 Matching

	3.4 Save, Compile, and Build
	3.5 Domain Explorer
	3.5.1 Domain Explorer Settings
	3.5.2 Listing All Concepts
	3.5.3 Analyzing a Specified Entity
	3.5.4 Limiting the Sources to Analyze

	3.6 Indexing Results
	3.6.1 Domain Data
	3.6.2 Manual input Data
	3.6.3 Indexed Sentences
	3.6.4 Concepts and CRCs

	4 REST Interface
	4.1 Swagger
	4.1.1 Returning NLP Data Using Swagger

	4.2 REST Operations
	4.2.1 Domains and Configurations
	4.2.2 Sources
	4.2.3 Entities
	4.2.4 Sentences
	4.2.5 Paths and CRCs
	4.2.6 Dictionaries and Matching
	4.2.7 Blacklists

	5 Alternatives for Creating an NLP Environment
	5.1 NLP Domains
	5.1.1 Defining a Domain Using DomainDefinition
	5.1.2 Defining a Domain Programmatically
	5.1.3 Setting Domain Parameters
	5.1.4 Assigning to a Domain
	5.1.5 Deleting All Data from a Domain
	5.1.6 Listing All Domains
	5.1.7 Renaming a Domain
	5.1.8 Copying a Domain

	5.2 NLP Configurations
	5.2.1 Defining a Configuration
	5.2.2 Setting Configuration Properties
	5.2.3 Using a Configuration
	5.2.4 Listing All Configurations
	5.2.5 Using a Configuration to Normalize a String

	5.3 NLP UserDictionary
	5.3.1 UserDictionary Format
	5.3.2 Defining a UserDictionary in Domain Architect
	5.3.3 Defining a UserDictionary as an Object Instance
	5.3.4 Defining a UserDictionary as a File

	6 Loading Text Data Programmatically
	6.1 Loader
	6.1.1 Loader Error Logging
	6.1.2 Loader Reset()

	6.2 Lister
	6.2.1 Initializing a Lister
	6.2.2 Overriding Lister Instance Defaults
	6.2.3 Lister Assigns IDs to Sources
	6.2.4 Lister Defaults Example
	6.2.5 Lister Parameters
	6.2.6 Batch or List?

	6.3 Listing and Loading Examples
	6.3.1 Loading Files
	6.3.2 Loading SQL Records
	6.3.3 Loading Elements of a Subscripted Global
	6.3.4 Loading a String

	6.4 Updating the Domain Contents
	6.4.1 Adding Sources
	6.4.2 Deleting Sources

	6.5 Loading a Virtual Source
	6.5.1 Deleting a Virtual Source

	6.6 Copying and Re-indexing Loaded Source Data
	6.6.1 UserDictionary and Copied Sources

	7 Performance Considerations when Loading Texts
	8 NLP Queries
	8.1 Types of Queries
	8.2 Queries Described in this Chapter
	8.3 Query Method Parameters
	8.4 Counting Sources and Sentences
	8.5 Counting Entities
	8.6 Listing Top Entities
	8.6.1 GetTop(): Most-Frequently-Occurring Entities
	8.6.2 GetTopTFIDF() and GetTopBM25()

	8.7 CRC Queries
	8.7.1 Listing CRCs that Contain Entities
	8.7.2 Counting Sources that Contain a CRC
	8.7.3 Listing Sources or Sentences that Fulfill a CRC Mask

	8.8 Listing Similar Entities
	8.8.1 Parts and N-grams

	8.9 Listing Related Entities
	8.9.1 Limiting by Position

	8.10 Counting Paths
	8.11 Listing Similar Sources
	8.12 Summarizing a Source
	8.12.1 Custom Summaries

	8.13 Querying a Subset of the Sources

	9 Semantic Attributes
	9.1 Negation
	9.1.1 Properties of Formal Negation
	9.1.2 Using Negation Attributes
	9.1.3 Negation Attribute Structure
	9.1.4 Negation Bit Map
	9.1.5 Negation and Dictionary Matching
	9.1.6 Negation Examples
	9.1.7 Adding Negation Terms
	9.1.8 Negation Special Cases

	9.2 Measurement
	9.3 Time, Duration, and Frequency
	9.4 Sentiment
	9.4.1 Using Sentiment Attributes

	10 Stemming
	10.1 Configuring Stemming
	10.1.1 Hunspell

	10.2 Stem Retrieval Methods
	10.3 Using Stems

	11 Blacklists
	11.1 Creating a Blacklist
	11.1.1 Blacklists and Domains

	11.2 Queries that Support Blacklists
	11.2.1 Blacklist Query Example

	12 Filtering Sources
	12.1 Supported Filters
	12.2 Filtering by the ID of the Source
	12.2.1 By External Id
	12.2.2 By Source Id

	12.3 Filtering a Random Selection of Sources
	12.4 Filtering by Number of Sentences
	12.5 Filtering by Entity Match
	12.5.1 Filtering by Dictionary Match

	12.6 Filtering by Indexing Date Metadata
	12.7 Filtering by User-defined Metadata
	12.7.1 Metadata Filter Operators

	12.8 Filtering by SQL Query
	12.9 Filter Modes
	12.10 Using GroupFilter to Combine Multiple Filters

	13 Text Categorization
	13.1 Text Categorization Implementation
	13.1.1 Implementation Interfaces

	13.2 Establishing a Training Set and a Test Set
	13.3 Building a Text Classifier Programmatically
	13.3.1 Create a Text Classifier
	13.3.2 Populate the Terms Dictionary
	13.3.3 Run the Classification Optimizer
	13.3.4 Generate the Text Classifier

	13.4 Testing a Text Classifier
	13.4.1 Using Test Results

	13.5 Building a Text Classifier Using the UI
	13.5.1 Define a Data Set for the UI
	13.5.2 Build a Text Classifier
	13.5.3 Optimize the Text Classifier
	13.5.4 Test the Text Classifier against a Test Set of Data
	13.5.5 Test the Text Classifier on Uncategorized Data

	13.6 Using a Text Classifier

	14 Dominance and Proximity
	14.1 Semantic Dominance
	14.1.1 Dominance in Context
	14.1.2 Concepts of Semantic Dominance
	14.1.3 Semantic Dominance Examples

	14.2 Semantic Proximity
	14.2.1 Japanese Semantic Proximity
	14.2.2 Proximity Examples

	15 Custom Metrics
	15.1 Implementing Custom Metrics
	15.2 Types and Targets
	15.3 Copying Metrics

	16 Smart Matching: Creating a Dictionary
	16.1 Introducing Dictionary Structure and Matching
	16.1.1 Terminology

	16.2 Creating a Dictionary
	16.2.1 Dictionaries and Domains
	16.2.2 Dictionary Creation Examples
	16.2.3 Defining a Format Term
	16.2.4 Multiple Formats in a Dictionary Term

	16.3 Listing and Copying Dictionaries
	16.3.1 Listing Existing Dictionaries
	16.3.2 Copying Dictionaries

	16.4 Extending Dictionary Constructs

	17 Smart Matching: Using a Dictionary
	17.1 How Dictionary Matching Works
	17.1.1 Match Scoring

	17.2 Matching A String
	17.2.1 Matching an Entity String
	17.2.2 Matching a Sentence String

	17.3 Matching Sources
	17.4 Defining a Matching Profile
	17.4.1 Matching Profile Properties
	17.4.2 Domain Default Matching Profile

	18 User Interfaces
	18.1 How to Display NLP User Interfaces
	18.2 Abstract Portal
	18.3 Abstract Source Viewer
	18.4 Loading Wizard
	18.5 Domain Explorer
	18.6 Basic Portal
	18.7 Indexing Results
	18.8 Matching Results

	19 IRIS Natural Language Processing (NLP) Tools
	19.1 NLP Shell Interface
	19.1.1 List, Show, and Summarize Sources
	19.1.2 Filter Sources

	19.2 NLP Data Upgrade Utility

	20 iKnow Web Services
	20.1 Available Web Services
	20.2 Using an NLP Web Service
	20.3 Example
	20.4 Comparison of NLP Web Services with Primary NLP APIs
	20.5 See Also

	21 KPIs and Dashboards
	21.1 KPI Terminology
	21.2 Defining a KPI That Uses Text Analytics Query
	21.3 Available KPI Filters
	21.4 Overriding the KPI Properties
	21.5 Example
	21.6 Creating a Dashboard to Display the KPI
	21.6.1 Creating Dashboards: Basics
	21.6.2 Changing the Series Names
	21.6.3 Configuring the Properties
	21.6.4 Adding Previous Page and Next Page Buttons
	21.6.5 Example Dashboard with KPI

	21.7 Providing Access to Dashboards
	21.8 See Also

	22 Customizing NLP
	22.1 Custom Lister
	22.1.1 Lister name
	22.1.2 SplitFullRef() and BuildFullRef()
	22.1.3 Default Processor
	22.1.4 Expand List

	22.2 Custom Processor
	22.2.1 Metadata

	22.3 Custom Converter
	22.3.1 %OnNew
	22.3.2 Buffer String
	22.3.3 Convert
	22.3.4 Next Converted Part

	23 Language Identification
	23.1 Configuring Automatic Language Identification
	23.2 Using Automatic Language Identification
	23.2.1 Language Identification Queries

	23.3 Overriding Automatic Language Identification
	23.4 Language-Specific Issues

	Appendix A: Domain Parameters

