
Business Process and Data
Transformation Language

Reference

Version 2019.2
2019-06-20

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Business Process and Data Transformation Language Reference
InterSystems IRIS Data Platform Version 2019.2 2019-06-20
Copyright © 2019 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

BPL Elements ... 3
Common Attributes and Elements .. 4
<alert> .. 5
<assign> ... 6
<branch> ... 13
<break> ... 14
<call> .. 15
<case> ... 20
<catch> ... 22
<catchall> ... 24
<code> .. 25
<compensate> ... 28
<compensationhandlers> .. 29
<context> .. 30
<continue> .. 31
<default> .. 33
<delay> ... 34
<empty> ... 36
<false> .. 37
<faulthandlers> ... 38
<flow> .. 39
<foreach> ... 41
<if> ... 43
<label> .. 45
<milestone> .. 46
<parameters> .. 47
<process> ... 49
<property> .. 53
<reply> ... 55
<request> .. 56
<response> ... 57
<rule> ... 58
<sequence> ... 61
<scope> .. 63
<sql> ... 65
<switch> ... 67
<sync> .. 68
<throw> .. 73
<trace> .. 74
<transform> .. 75
<true> ... 77
<until> .. 78
<while> ... 79
<xpath> ... 80
<xslt> .. 82

Business Process and Data Transformation Language Reference iii

DTL Elements .. 85
DTL <annotation> .. 86
DTL <assign> ... 87
DTL <code> ... 90
DTL <false> ... 91
DTL <foreach> ... 92
DTL <if> .. 94
DTL <sql> .. 95
DTL <subtransform> .. 96
DTL <trace> ... 98
DTL <transform> ... 99
DTL <true> .. 101

iv Business Process and Data Transformation Language Reference

About This Book

This book provides an XML reference information for the Business Process Language (BPL) and Data Transformation
Language (DTL). The DTL has elements that are similar to a subset of the elements in BPL, but there are some differences.
For that reason, the DTL elements are described separately from the BPL elements.

Tip: If you want to view or edit the XML for a BPL or DTL, edit the BPL or DTL using Studio and click on View other

code.

The Business Process Language contains the following XML elements:

• Common Attributes and Elements

• <alert>

• <assign>

• <branch>

• <break>

• <call>

• <case>

• <catch>

• <catchall>

• <code>

• <compensate>

• <compensationhandlers>

• <context>

• <continue>

• <default>

• <delay>

• <empty>

• <false>

• <faulthandlers>

• <flow>

• <foreach>

• <if>

• <label>

• <milestone>

• <parameters>

• <process>

• <property>

Business Process and Data Transformation Language Reference 1

• <reply>

• <request>

• <response>

• <rule>

• <scope>

• <sequence>

• <sql>

• <switch>

• <sync>

• <throw>

• <trace>

• <transform>

• <true>

• <until>

• <while>

• <xpath>

• <xslt>

The Data Transformation Language contains the following XML elements:

• <annotation>

• <assign>

• <code>

• <false>

• <foreach>

• <if>

• <sql>

• <subtransform>

• <transform>

• <true>

The following books provides related information:

• Developing BPL Processes describes how to use the Business Process Designer.

• Developing DTL Transformations describes how to build DTLs.

2 Business Process and Data Transformation Language Reference

About This Book

BPL Elements

This reference provides detailed information about each BPL element.

Tip: If you want to view or edit the XML for a BPL, edit the BPL using Studio and click on View other code.

Business Process and Data Transformation Language Reference 3

Common Attributes and Elements
Describes attributes and elements that are present in most BPL elements.

Common Attributes
Most BPL elements can contain the following attributes, which are listed here for brevity.

ValueDescriptionAttribute

A string of 0 to 255
characters.

Usually optional. The name of this element.name

A Boolean value: 1
(true) or 0 (false).

Optional.You can temporarily disable the element by setting its
disabled attribute to 1 (true).To re-enable the element, either remove
the disabled attribute or set it to 0 (false).

disabled

A positive integer.Optional. Sets the x coordinate of the graphic that represents this
element in BPL diagrams. Ignored by the BPL compiler.

xpos

A positive integer.Optional. The y coordinate.ypos

A positive integer.Optional. If the graphic that represents this element has two icons
(start and end), then xend sets the x coordinate for the ending icon.
Ignored by the BPL compiler.

xend

A positive integer.Optional. The ending y coordinate.yend

Common Element: <annotation>
Most BPL elements can contain the <annotation> element, which allows you to associate descriptive text with a shape in
a BPL diagram. This element is as follows:

<annotation> <![CDATA[Gets the current Account Balance for a customer.]]>
</annotation>

The text within the CDATA block appears as a commentary on the associated activity. The following example provides
an <annotation> for a <call> activity:

<call name="BankManana">
 <annotation>
 <![CDATA[Send an asynchronous
 request to Bank Manana.]]>
 </annotation>
</call>

The CDATA block enables you to include line breaks and special characters such as the apostrophe (') without needed to
use XML escape sequences. Note the line break between asynchronous and request in the example above, which the
diagram reproduces literally as follows:

The maximum length of the <annotation> string is 32,767 characters, including the CDATA escape characters.

4 Business Process and Data Transformation Language Reference

BPL Elements

<alert>
Send an alert message to a user device during execution of a business process.

<alert value="The system needs service right away."/>

Details
ValueDescriptionAttribute or Element

A string of one or more characters. May
be an expression or a literal string. If this
is an expression, it must use the scripting
language specified by the containing
<process> element.

Required. The text for the alert
message.

value attribute

See “Common Attributes and
Elements.”

name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Description
The <alert> element sends an alert message to a user device.

The text of the message is always written to the InterSystems IRIS™ Event Log as an entry of type Alert. However, the
real purpose of the <alert> element is to contact the user through some notification device such as a pager or email. The
<alert> element does this by sending the text of the message to a configuration item called Ens.Alert, which has been set
up with all the information necessary to contact user devices outside InterSystems IRIS.

Important: If no Ens.Alert item has been configured as a member of the production, the <alert> simply goes to the
Event Log.

For details, see “Defining Alert Processors” in Developing Productions.

Business Process and Data Transformation Language Reference 5

<alert>

<assign>
Assign a value to a property in the business process execution context.

<assign property="propertyname" value="expression" />

Details
ValueDescriptionAttribute or Element

A string of one or more characters.Required. The target of this
assignment.This must be a property
in an execution context object,
usually context, request, response,
callrequest, or callresponse. For
details, see the table in the
Description topic, below.

property attribute

A literal value, or an expression that
returns a valid value for the property. If
this is an expression, it must use the
scripting language specified by the
containing <process> element.

Required. Value of the property.value attribute

A literal string, either “append”, “ set” ,
“clear” , “ insert” , or “ remove” as
described below.

Optional. If property is a collection
(list or array), use action to specify
the type of assignment to perform on
the collection. If not specified, a “set”
is performed.

action attribute

An expression that evaluates to a key.Optional, except in some cases when
property is a collection (list or array).
If so, you must use this key to specify
the member of the collection that is
the target of this assignment.

key attribute

See “Common Attributes and
Elements.”

name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Description
This topic describes the importance of the execution context to BPL business processes, and explains how to use the <assign>
element to set values in the business process execution context.

A business process must have certain state information saved to disk and restored from disk, whenever it suspends or
resumes execution. This feature is especially important for long-running business processes, which may take days or weeks
to complete. To address this need, InterSystems IRIS provides every BPL business process with a group of objects and
variables called the execution context. The variables in the execution context are automatically saved and restored each
time the BPL business process suspends and resumes execution. The correct operation of a BPL business process depends
on the appropriate use of these variables.

6 Business Process and Data Transformation Language Reference

BPL Elements

Every variable in the execution context has a specific name and purpose, and can have its value set using the <assign>
element. The following table lists the variables in the execution context.

PurposeVariable

The callrequest object contains any properties that are required to build the request message
object to be sent by a <call>. Within the corresponding <request> activity, use a sequence
of <assign> elements to set the property values in callrequest.

callrequest

Upon completion of a <call> activity, the callresponse object contains the properties of the
response message object that was returned to the <call>. Within the corresponding
<response> activity, use a sequence of <assign> elements to copy the returned values from
properties on callresponse into properties on context or response.

callresponse

The context object is a general-purpose data container for the business process. context
has no automatic definition. To define properties of this object, use the <context> element.
That done, you may refer to these properties anywhere inside the <process> element using
dot syntax, as in: context.Balance

context

The request object contains any properties of the original request message object that
caused this business process to be instantiated.You may refer to request properties
anywhere inside the <process> element using dot syntax, as in: request.UserID

request

The response object contains any properties that are required to build the final response
message object to be returned by the business process.You may refer to response properties
anywhere inside the <process> element using dot syntax, as in: response.IsApproved.
Use the <assign> element to assign values to these properties.

response

status is a value of type %Status that indicates success or failure. As the BPL business
process runs, if at any time status acquires a failure value, InterSystems IRIS immediately
terminates the business process and writes a text message to the Event Log indicating the
reason for failure. In general, this happens automatically, when unsuccessful values are
returned from <call> activities. However, BPL business process code can initiate a sudden,
but graceful exit by setting the status value using <assign> or <code>. See the description
at the end of this topic.

status

syncresponses is a collection of response objects, keyed by the names of the <call> activities
being synchronized. Only completed calls are represented.You can retrieve a response
from syncresponses only after a <sync> and before the end of the current <sequence>. Do
so using the syntax syncresponses.GetAt("MyName") where the relevant call was defined
as <call name="MyName">

syncresponses

Business Process and Data Transformation Language Reference 7

<assign>

PurposeVariable

The synctimedout value is an integer. synctimedout indicates the outcome of a <sync>
activity after several calls.You can test the value of synctimedout after the <sync> and
before the end of the <sequence> that contains the calls and <sync>. synctimedout has
one of three values:

• If 0, no call timed out. All the calls had time to complete. This is also the value if the
<sync> activity had no timeout set.

• If 1, at least one call timed out. This means not all <call> activities completed before
the timeout.

• If 2, at least one call was interrupted before it could complete.

Generally you will test synctimedout for status and then retrieve the responses from com-
pleted calls out of the syncresponses collection.

synctimedout

CAUTION: Like all other execution context variable names, status is a reserved word in BPL. Do not use it with
<assign> except as described above.

The BPL <assign> element specifies a target and an expression that will be assigned to it. The target may be a property in
one of the objects in the business process execution context, or it may be one of the single-valued variables such as status.
The properties involved in an <assign> element can be data types, objects, or collections of either. Collection properties
are declared by setting the collection attribute to “array” or “list” in the corresponding <property> element.

As described in the above table, the object called context serves as a general-purpose context object for the business process.
Properties in the context object are defined using the <context> and <property> elements at the beginning of the <process>
environment. For example:

<process request="Demo.Loan.Msg.Application" response="Demo.Loan.Msg.Approval">
 <context>
 <property name="CreditRating" type="%Integer"/>
 <property name="PrimeRate" type="%Numeric"/>
 </context>
 ...
</process>

The above BPL excerpt defines two context properties for this business process — context.CreditRating and context.PrimeRate

— but does not assign values to them. An <assign> element anywhere below this <context> element and within the <process>
environment can assign a value to any of these properties as needed. For example:

<process request="Demo.Loan.Msg.Application" response="Demo.Loan.Msg.Approval">
 <context>
 <property name="CreditRating" type="%Integer"/>
 <property name="PrimeRate" type="%Numeric"/>
 </context>
 <sequence>
 <call name="PrimeRate" target="Demo.Loan.WebOperations" async="0">
 <request type="Demo.Loan.Msg.PrimeRateRequest">
 </request>
 <response type="Demo.Loan.Msg.PrimeRateResponse">
 <assign property="context.PrimeRate" value="callresponse.PrimeRate"/>
 </response>
 </call>
 ...
 </sequence>
 ...
</process>

The above BPL excerpt continues the first one. Note that the <call> element in this example is synchronous, and has both
a <request> and a <response> element.

The <response> in this case contains an <assign> operation that references two properties on objects inside the execution
context: context.PrimeRate (from the general-purpose context object) and callresponse.PrimeRate (from the response object

8 Business Process and Data Transformation Language Reference

BPL Elements

associated with the current <call> element, in this case Demo.Loan.Msg.PrimeRateResponse as you can see above). The
<assign> operation receives the value of the PrimeRate property returned from the <call> and places it in the general-purpose
context object.

Inside the <sequence> element shown above, and continuing from the <call> element just discussed, the example continues
as follows:

<call name="CreditRating" target="Demo.Loan.WebOperations" async="0">
 <request type="Demo.Loan.Msg.CreditRatingRequest">
 <assign property="callrequest.SSN" value='request.SSN'/>
 </request>
 <response type="Demo.Loan.Msg.CreditRatingResponse">
 <assign property="context.CreditRating" value="callresponse.CreditRating"/>
 </response>
</call>

The above statements assign the SSN property from the primary request (request.SSN) to the SSN property in the request
being made by the current <call> element (callrequest.SSN). After this assignment is made, the <call> element issues the
request. It is a synchronous call of type Demo.Loan.WebOperations. When a response returns, the <call> element gets the
value of the CreditRating property returned from the <call> (callresponse.CreditRating) and places it in a property on the
general-purpose context object (context.CreditRating).

The following statement assigns the integer value 1 to the IsApproved property in the primary response object for the business
process (response.IsApproved). In this example, IsApproved is a Boolean value (true or false) according to InterSystems
IRIS conventions. That is, an integer value of 1 means true (the applicant was approved), and 0 means false (the applicant
was not approved).

<assign name='IsApproved' property="response.IsApproved" value="1">
 <annotation>
 <![CDATA[Copy IsApproved into the response object.]]>
 </annotation>
</assign>

The following statement assigns a calculated value — the result of an expression involving two properties in the general-
purpose context object — to the InterestRate property in the primary response object for the business process
(response.InterestRate):

<assign name='InterestRate'
 property="response.InterestRate"
 value="context.PrimeRate+1+(2*(1-(context.CreditRating/100)))">
 <annotation>
 <![CDATA[Copy InterestRate into the response object.]]>
 </annotation>
</assign>

Types of <assign> Operation

The syntax for the BPL <assign> element works as follows:

1. The property attribute identifies an object and property that is the target of the assignment operation.

2. The value attribute provides the value for the target property. This may be an expression that is evaluated at runtime
to provide a value for the assignment. Expressions within an <assign> element must use the language specified by the
<process> element for the business process.

3. There are several types of BPL <assign> operation, as specified by the optional action attribute. The allowable values
for the action attribute are:

Business Process and Data Transformation Language Reference 9

<assign>

DescriptionValue

Add the target element to the end of the list.“append”

(Default) Set the target element to a new value.“set”

Insert a new value into the collection.“ insert”

Remove the target element from the collection.“remove”

Clear the contents of the target collection.“clear”

Aside from the default value “set”, most of these variations are intended to handle assignments involving collection
properties. The various assignment types are summarized in the following table.

Resultkey Attribute
Required

action Attribute
Value

Property Type

Property is set to new valueNo“set”Non-collection

Array is clearedNo“clear”Array

Element at key is removedYes“remove”Array

Element at key is set to new valueYes“set”Array

Element is added to the end of the listNo“append”List

List is clearedNo“clear”List

Element is inserted at position determined by
key

Yes“ insert”List

Element at key is removedYes“remove”List

Element at key is replacedYes“set”List

Details about each type of BPL <assign> operation follow.

The append Operation

The “append” operation adds the target element to the end of a list property.

The set Operation

The “set” operation sets the value of the specified property to the value of the value attribute. Note that the value attribute
contains an expression and can itself refer to an object or property of an object within the execution context:

<assign name='CopyResult' property='context.SSN' value='callresponse.SSN' />

If the target property is an array collection, then the value of the key attribute specifies an item in the array, otherwise the
key attribute is ignored.

If the target property is a collection and the value attribute specifies a collection of the same type, then the collection contents
are copied into the target collection:

<assign name='CopyResults' property='context.List' value='callresponse.List' />

The default action for the assign element is the set operation; if action is not specified, then the assign specifies a set oper-
ation.

10 Business Process and Data Transformation Language Reference

BPL Elements

The clear Operation

This operation applies to collection properties only. The “clear” operation clears the contents of the specified collection
property. The value and key attributes are ignored, but since the BPL schema for the <assign> element requires it, a value

attribute must be present in the statement.

For example, the following will clear the contents of the collection property List:

<assign name='ClearResults' property='context.List' action='clear' value='' />

The insert Operation

This applies to list collection properties only. The “insert” operation inserts a value into the specified collection property.
If the key attribute is present the new value is inserted after the position (an integer) specified by key otherwise the new
item is inserted at the end.

For example, the following will insert a value into the array collection property Array using the key “primary”:

<assign name='Ins' property='context.Array'
 action='insert'
 key='primary'
 value='request.Primary' />

The remove Operation

This applies to collection properties only. The “remove” operation removes an item from the specified collection property.
The value attribute is ignored, but since the BPL schema for the <assign> element requires it, a value attribute must be
present in the statement.

If the target property is an array collection, then the value of the key attribute specifies an item in the array, otherwise the
key attribute is ignored.

For example, the following will remove the element with key “abc” from the array property Array:

<assign name='Remove' property='context.Array' action='remove'
 key='abc' value='' />

Using <assign> to Set the status Variable

status is a business process execution context variable of type %Status that indicates success or failure.

Note: Error handling for a BPL business process happens automatically, without your ever needing to test or set the
status value in the BPL source code. The status value is documented here in case you need to trigger a BPL
business process to exit under certain special conditions.

When a BPL business process starts up, status is automatically assigned a value indicating success. To test that status has
a success value, you can use the macro $$$ISOK(status) in ObjectScript. If the test returns a True value, status has a
success value.

As the BPL business process runs, if at any time status acquires a failure value, InterSystems IRIS immediately terminates
the business process and writes the corresponding text message to the Event Log. This happens regardless of how status
acquired the failure value. Thus, the best way to cause a BPL business process to exit suddenly, but gracefully is to set
status to a failure value.

You can use an <assign> element to set status to a failure value. The usual convention for doing this is to use an <if> element
to test the result of some prior activity, and then within the <true> or <false> element, use <assign> to set status to a failure
value when failure conditions exist.

status is available to a BPL business process anywhere inside the <process>. You can refer to status with the same syntax
as for any variable of the %Status type, that is: status

Business Process and Data Transformation Language Reference 11

<assign>

See Also
<call> and <context>

12 Business Process and Data Transformation Language Reference

BPL Elements

<branch>
Conditionally cause an immediate change in the flow of execution.

<branch condition="myVar='1'" label="JumpToMe" />

Details
ValueDescriptionAttribute or Element

An expression that evaluates to the integer
value 1 (if true) or 0 (if false).The expression
must use the scripting language specified by
the containing <process> element.

Required. An expression that,
if true, causes the flow of
control to jump to the identified
<label>.

condition attribute

A string of 0 to 255 characters.Required. The name of the
<label> to jump to.

label attribute

See “Common Attributes and
Elements.”

name, disabled, xpos, ypos,
xend, yend attribute

<annotation> element

Description
The <branch> element causes an immediate change in the flow of execution if the value of its condition expression is true.
Control passes to the <label> element whose name is specified as the value of the label attribute in the <branch>.

In the following BPL example, if the condition expression is true, the flow of control shifts directly from the <branch>
with the label value TraceSkipped to the <label> with the name value TraceSkipped, while the intervening <trace> element
is ignored:

<branch condition="myVar='1'" label="TraceSkipped" />
<trace value="Ignore me when myVar is 1..." />
<label name="TraceSkipped" />

If the <branch> condition expression is false, control simply passes to the next BPL statement following the <branch>, in
this case <trace>.

A destination <label> must be in the same scope as the <branch> that references it. Thus:

• Each <sequence> element within a <flow> has its own <label> scope. The BPL execution engine prevents any attempt
to <branch> to a <label> outside the current <sequence> container.

• There are similar restrictions on any other BPL container element that controls the flow of execution at runtime. Each
container has its own <label> scope.

In addition to these restrictions, each <label> name value must be unique across the entire BPL business process, not just
within the current scope.

CAUTION: As is true in all programming languages, the BPL branch mechanism must be used with care. The BPL
editor does not prevent basic programming mistakes such as infinite loops or invalid branch cases.

Business Process and Data Transformation Language Reference 13

<branch>

<break>
Break out of a loop and exit the loop activity.

<break/>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend, yend attributes

<annotation> element

Description
BPL syntax permits any element that can contain a sequence of activities — <case>, <default>, <foreach>, <false>,
<sequence>, <true>, <until>, or <while> — to contain a <break> element if desired.

The <break> element allows the flow of control to exit a loop immediately without completing any more of the operations
inside the containing loop. For example:

<while condition="0">

 //...do various things...

 <if condition="somecondition">
 <true>
 <break/>
 </true>
 </if>

 //...do various other things...

</while>

In the above example, it is the <true> element that contains the <break> element. However, the loop affected by this <break>
is actually the containing <while> loop.

The example works as follows: If on some pass through this loop, the <if> element finds “somecondition” to be true (that
is, equal to the integer value 1) then the flow of control passes to the <true> element inside the <if>. Upon encountering
the <break> element, execution immediately exits the containing <while> loop and proceeds to the next statement following
the </while>.

Loop activities that you might want to modify by using a <break> element include <foreach>, <until>, and <while>.

Note: BPL business process code can initiate a sudden, but graceful exit by setting the business process execution context
variable status to a failure value using an <assign> or <code> statement.

See Also
<continue>

14 Business Process and Data Transformation Language Reference

BPL Elements

<call>
Send a request to a business operation, or to another business process.

<call name="Call" target="MyApp.MyOperation" async="1"> <request
type="MyApp.Request"> ... </request> <response type="MyApp.Response">
... </response> </call>

Details
Attributes are required unless otherwise indicated in the table description.

ValueDescriptionAttribute or
Element

A string of 1 to 255
characters

Required. The name of the <call> element; provide a literal
string, or by using the @ indirection operator to refer to the
value of a context variable.
If you wish to use a <sync> element to retrieve responses
from asynchronous calls, refer to them using this name.

name attribute

A string of one or more
characters

Required. The configured name of the business operation or
business process to which the request is being sent. Provide
this value as a literal string, or by using the @ indirection
operator to refer to the value of a context variable.

target attribute

1 (true) or 0 (false)Required. Specifies the type of request to make. If 1 (true),
the request is asynchronous. If 0 (false), the request is
synchronous.

async attribute

A string of one or more
characters; for example
“2003:10:19T10:10”

Optional. Sets a timeout on a synchronous call. The timeout
value is used only when the async attribute of the <call> is
set to 0 (false). Specifies the time, in seconds, to wait for the
response, as an expression that evaluates to an XML
xsd:dateTime value.

timeout attribute

See “Common Attributes and Elements.”disabled, xpos,
ypos, xend,yend
attributes

<annotation>
element

Required. Specifies the type (class name) of the request to
send.

<request>
element

Optional. Specifies the type (class name) of the response to
return. If omitted, no response is returned from this <call>.

<response>
element

Description
The <call> element sends a request (synchronously or asynchronously) to a business operation or business process. The
<call> element has a required attribute, async, that determines how the request is made:

• If async is 0 (or False), the request is made synchronously; the business process waits until it receives a response before
continuing execution.

Business Process and Data Transformation Language Reference 15

<call>

Important: A <call> element with async='False' and a <response> block defined suspends execution of its
business process thread until the called operation completes.

A <call> element with async='False' but with no <response> block defined behaves as if
async='True'. If you want to send a synchronous request but do not require a response, create a
non-functioning <response> block so that the <call> waits for the target host to finish before continuing
execution.

• If async is 1 (or True), the request is made asynchronously; the business process continues to execute after making the
request. The business process can later receive the responses from several asynchronous calls by providing a <sync>
element that specifies a list of the <call> elements for which it is waiting. For details, see the <sync> topic later in this
book.

The <call> element has the child elements <request> and <response> which identify the class of request and response
objects to use in making the call. Either element can contain one or more <assign> elements. In the <request> element,
<assign> elements are used to fill in the properties of the request object used for the call. The <response> element uses
<assign> elements when it needs to move the properties of the resulting response object to a new location, such as the
context or response variables in the business process execution context.

Note: There is detailed information about the business process execution context in documentation of the <assign>
element. Also see “Business Process Execution Context” in the chapter “About BPL Processes” of Developing
BPL Processes.

In the case of an asynchronous request, the <assign> elements within the body of the <response> element are executed
when the corresponding request is received. There is no guarantee when this will occur, so a business process will typically
use the <sync> element to wait for an asynchronous response. Note that if a response is not received within the timeout
period specified by the <sync> element, then the assignments defined by the corresponding <response> block will not be
executed, and the response itself will be marked with a status of Discarded.

If the call is synchronous, an optional timeout can be specified using the timeout attribute on the <call> element itself. This
attribute cannot be used for asynchronous calls. If the <call> element has async set to 1 (true) then the only way to set a
timeout period is to use the timeout attribute on the <sync> element that is being used to collect the asynchronous response(s).

The following example sends an synchronous Ens.StringRequest request to the Get Weather Report business operation:

<call name='Get Weather Report' target='Get Weather Report' async='0' >
<request type='Ens.StringRequest' >
<assign property="callrequest.StringValue" value="context.Location" action="set" />
</request>
<response type='Demo.Service.Msg.WeatherOperationResponse' >
<assign property="context.OperationReport" value="callresponse" action="set" />
</response>
</call>

The following example uses the <call> element to send an asynchronous MyApp.SalaryRequest request to the
MyApp.PayrollApp business operation:

<call name="FindSalary" target="MyApp.PayrollApp" async="1">
 <request type="MyApp.SalaryRequest">
 <assign property="callrequest.Name" value="request.Name" />
 <assign property="callrequest.SSN" value="request.SSN" />
 </request>
 <response type="MyApp.SalaryResponse">
 <assign property="context.Salary" value="callresponse.Salary" />
 </response>
</call>

Whenever a <call> element is executed, the BPL engine inserts the name of the <call> element into the message header so
that it is visible in later Message Browser and Visual Trace displays.

16 Business Process and Data Transformation Language Reference

BPL Elements

Use of the <assign> Element
The above example includes <assign> elements that manipulate properties in the variables in the business process execution
context such as context, request, callrequest, and callresponse. While many details concerning these variables are found
in the documentation for the <assign> element, the following table describes the execution context variables as they relate
to the <call> activity:

The <call> element can refer to the following variables and their properties. Do not use variables not listed here.

PurposeVariable

A <call> element contains a <request> element that identifies the type of message that will
be sent to the target. If this message type has input parameters, the <request> element
must provide <assign> elements that assign values to properties in the callrequest object.
These properties must match the input parameters for the message type. After the <request>
completes, the callrequest object goes out of scope.

callrequest

If the request message type has a corresponding response message type, the <call>
element contains a <response> element.When the response arrives, control passes to the
<response> element.The output parameters from the response message become properties
of the callresponse object. Since callresponse only has meaning inside the <response>
element, to preserve these values the <response> element must provide <assign> elements
that assign callresponse values to properties of other, more permanent objects in the
business process execution context, usually context or response.

callresponse

Throughout the business process, the context object serves as a general-purpose container
for any business process data that needs to be persistent.

context

Throughout the business process, the request object contains the original properties that
were sent to the business process as parameters of the request that instantiated it.

request

The response object retains its scope throughout the business process. It contains the
properties that are expected to be returned to the caller as output parameters of this business
process. Whatever is inside the response object, when a business process completes or
exits, will be interpreted as the return values of the business process.

response

status is a %Status value that indicates success or failure. When a BPL business process
starts up, status is automatically assigned a value indicating success. As the BPL business
process runs, if at any time status acquires a failure value, the business process immediately
exits and writes the corresponding text message to the Event Log. status automatically
receives the returned %Status value returned from any <call> activity, without any special
statements in the BPL code. Thus, if any <call> activity fails, the BPL business process
immediately exits and writes an Event Log entry.

status

syncresponses is a collection of response objects, keyed by the names of the <call> activities
being synchronized. Only completed calls are represented.You can retrieve a response
from syncresponses only after a <sync> and before the end of the current <sequence>.
Do so using the syntax syncresponses.GetAt("MyName") where the relevant call was
defined as <call name="MyName">

syncresponses

Business Process and Data Transformation Language Reference 17

<call>

PurposeVariable

The synctimedout value is an integer. synctimedout indicates the outcome of a <sync>
activity after several calls.You can test the value of synctimedout after the <sync> and
before the end of the <sequence> that contains the calls and <sync>. synctimedout has
one of three values:

• If 0, no call timed out. All the calls had time to complete. This is also the value if the
<sync> activity had no timeout set.

• If 1, at least one call timed out. This means not all <call> activities completed before
the timeout.

• If 2, at least one call was interrupted before it could complete.

Generally you test synctimedout for status and then retrieve the responses from completed
calls out of the syncresponses collection.

synctimedout

CAUTION: Like all other execution context variable names, status is a reserved word in BPL; do not use it except as
described in this table.

Indirection in the name or target Attributes (Accessing Context Variables)
The values of the name or target attributes are strings. The name identifies the call and may be referenced in a later <sync>
element. The target is the configured name of the business operation or business process to which the request is being sent.
Either of these strings can be a literal value:

<call name="Call" target="MyApp.MyOperation" async="1">

Or the @ indirection operator can be used to access the value of a context variable that contains the appropriate string:

<call name="@context.nextCallName" target="@context.nextBusinessHost" async="1">

Using Multiple Asynchronous <calls> in a Loop, Followed by a <sync>
This section describes how to use multiple asynchronous <calls> in a loop, followed by a <sync>.

When a BPL makes a <call> it makes note of the name of the call; in the <sync>, you must specify that same name to
designate which pending request to wait for. In some scenarios, you have multiple asynchronous calls in a loop, as in this
example:

<sequence>
 <while condition='...'>
 <call name="A" async="1" />
 </while>
 ...
 <sync calls="A" type="all" timeout="3600"/>
</sequence>

Because the BPL tracks which call to wait for by the call name, the sync completes as soon as the first response comes in.
If you want the sync to wait until all such calls are completed, it is necessary to generate a set of unique call names and
then use that list of names. Here is a way to do so:

1. Create a context variable containing a string which changes for each call by adding a numeric iterator (i in the example
below). Before the call, initialize this variable as in the following example:

set context.callname = "A" _ context.i

2. Set the Name of the <call> equal to this variable.

18 Business Process and Data Transformation Language Reference

BPL Elements

3. Create a string containing all the <call> names, comma-separated, i.e.: "A1,A2,A3,A4,A5". Save that in a separate
variable, context.allCallNames, in the example below.

4. Set the calls attribute of the <sync> equal to the variable containing the list of calls.

<sequence>
 <while condition='...'>
 code here to set up callname and allCallNames ...
 <call name="@context.callname" async="1" />
 </while>
 ...
 <sync calls="@context.allCallNames" type="all" timeout="3600"/>
</sequence>

See Also
<assign>, <code>, <reply>, <sequence>, and <sync>

Business Process and Data Transformation Language Reference 19

<call>

<case>
Perform a set of activities when a condition is matched within a <switch> element.

<switch> <case> ... </case> ... <default> ... </default> </switch>

Details
ValueDescriptionAttribute or Element

An expression that evaluates to the
integer value 1 (if true) or 0 (if false).
This expression must use the scripting
language specified by the containing
<process> element.

Required. If this expression evaluates to
true, the contents of this <case> element
are executed. If false, this <case> is
ignored.

condition attribute

See “Common Attributes and Elements.”name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Optional. <case> may contain zero or
more of the following elements in any
combination: <alert>, <assign>,
<branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>, <flow>,
<foreach>, <if>, <label>, <milestone>,
<reply>, <rule>, <scope>, <sequence>,
<sql>, <switch>, <sync>, <throw>,
<trace>, <transform>, <until>, <while>,
<xpath>, or <xslt>.

Other elements

Description
A <switch> element contains a sequence of one or more <case> elements and an optional <default> element.

When a <switch> element is executed, it evaluates each <case> condition in turn. These conditions are logical expressions
in the scripting language of the containing <process> element. If any expression evaluates to the integer value 1 (true),
then the contents of the corresponding <case> element are executed; otherwise, the expression for the next <case> element
is evaluated.

If no <case> condition is true, the contents of the <default> element are executed.

As soon as one of <case> elements is executed, execution control leaves the surrounding <switch> statement. If no <case>
condition matches, control leaves the <switch> after the <default> activity executes.

Activities within a <case> element can be any BPL activity, including <assign> elements as in the example below:

20 Business Process and Data Transformation Language Reference

BPL Elements

<switch name='Approved?'>
 <case name='No PrimeRate' condition='context.PrimeRate=""'>
 <assign name='Not Approved' property="response.IsApproved" value="0"/>
 </case>
 <case name='No Credit' condition='context.CreditRating=""'>
 <assign name='Not Approved' property="response.IsApproved" value="0"/>
 </case>
 <default name='Approved' >
 <assign name='Approved' property="response.IsApproved" value="1"/>
 <assign name='InterestRate'
 property="response.InterestRate"
 value="context.PrimeRate+10+(99*(1-(context.CreditRating/100)))">
 <annotation>
 <![CDATA[Copy InterestRate into response object.]]>
 </annotation>
 </assign>
 </default>
</switch>

Business Process and Data Transformation Language Reference 21

<case>

<catch>
Catch a fault produced by a <throw> element.

<scope> <throw fault='"MyFault"'/> ... <faulthandlers> <catch
fault='"MyFault"'> ... </catch> </faulthandlers> </scope>

Details
ValueDescriptionAttribute or

Element

A string of 0 to 255 characters. If this is
an expression, it must use the scripting
language specified by the containing
<process> element.

Required. The name of the fault. It can be a
literal text string or an expression to be
evaluated.

fault attribute

See “Common Attributes and Elements.”name, disabled,
xpos, ypos, xend,
yend attribute

<annotation>
element

Optional. <catch> may contain zero or more
of the following elements in any combination:
<alert>, <assign>, <branch>, <break>, <call>,
<code>, <compensate>, <continue>,
<delay>, <empty>, <foreach>, <if>, <label>,
<milestone>, <reply>, <rule>, <scope>,
<sequence>, <sql>, <switch>, <sync>,
<throw>, <trace>, <transform>, <until>,
<while>, <xpath>, or <xslt>.

Other elements

Description
When a <throw> statement executes, control immediately shifts to the <faulthandlers> block inside the same <scope>,
skipping all intervening statements after the <throw>. Inside the <faulthandlers> block, the program attempts to find a
<catch> block whose value attribute matches the fault string expression in the <throw> statement. This comparison is case-
sensitive. When you specify a fault string it needs the extra set of quotes to contain it, as shown below:

<catch fault='"thrown"'/>

If there is a <catch> block that matches the fault, the program executes the code within this <catch> block and then exits
the <scope>. The program resumes execution at the next statement following the closing </scope> element.

If a fault is thrown, and the corresponding <faulthandlers> block contains no <catch> block that matches the fault string,
control shifts from the <throw> statement to the <catchall> block inside <faulthandlers>. After executing the contents of
the <catchall> block, the program exits the <scope>. The program resumes execution at the next statement following the
closing </scope> element. It is good programming practice to ensure that there is always a <catchall> block inside every
<faulthandlers> block, to ensure that the program catches any unanticipated errors.

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

Note: If a <catchall> is provided, it must be the last statement in the <faulthandlers> block. All <catch> blocks must
appear before <catchall>.

22 Business Process and Data Transformation Language Reference

BPL Elements

See Also
<catchall>, <compensate>, <compensationhandlers>, <faulthandlers>, <scope>, and <throw>.

Business Process and Data Transformation Language Reference 23

<catch>

<catchall>
Catch a fault or system error that does not match any <catch>.

<scope> <throw fault='"MyFault"'/> ... <faulthandlers> <catch
fault='"MyFault"'> ... </catch> <catch fault='"OtherFault"'>
 ... </catch> <catchall> ... </catchall> </faulthandlers>
 </scope>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend, yend
attributes

<annotation> element

Optional. <catchall> may contain zero or more of the
following elements in any combination: <alert>, <assign>,
<branch>, <break>, <call>, <code>, <compensate>,
<continue>, <delay>, <empty>, <foreach>, <if>, <label>,
<milestone>, <reply>, <rule>, <scope>, <sequence>, <sql>,
<switch>, <sync>, <throw>, <trace>, <transform>, <until>,
<while>, <xpath>, or <xslt>.

Other elements

Description
When a <throw> statement executes, control immediately shifts to the <faulthandlers> block inside the same <scope>,
skipping all intervening statements after the <throw>. Inside the <faulthandlers> block, the program attempts to find a
<catch> block whose value attribute matches the fault string expression in the <throw> statement. If it finds one, the program
executes the code within this <catch> block and then exits the <scope>. The program resumes execution at the next statement
following the closing </scope> element.

If a fault is thrown, and the corresponding <faulthandlers> block contains no <catch> block that matches the fault string,
control shifts from the <throw> statement to the <catchall> block inside <faulthandlers>. After executing the contents of
the <catchall> block, the program exits the <scope>. The program resumes execution at the next statement following the
closing </scope> element. It is good programming practice to ensure that there is always a <catchall> block inside every
<faulthandlers> block, to ensure that the program catches any unanticipated errors.

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

Note: If a <catchall> is provided, it must be the last statement in the <faulthandlers> block. All <catch> blocks must
appear before <catchall>.

See Also
<catch>, <compensate>, <compensationhandlers>, <faulthandlers>, <scope>, and <throw>.

24 Business Process and Data Transformation Language Reference

BPL Elements

<code>
Execute lines of custom code.

<code name='CodeWrittenInBasic'> <![CDATA['invoke custom method
"MyApp.MyClass".Method(context.Value)]]> </code>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend, yend attribute

<annotation> element

Description
The BPL <code> element executes one or more lines of user-written code within a BPL business process. You can use the
<code> element to perform special tasks that are difficult to express using the BPL elements. Any properties referenced
by the <code> element must be properties within the business process execution context.

The scripting language for a BPL <code> element is specified by the language attribute of the containing <process> element.
This should be objectscript. For further information, see:

• Using ObjectScript

• ObjectScript Reference

Typically a developer wraps the contents of a <code> element within a CDATA block so that it is not necessary to escape
special XML characters such as the apostrophe (') or the ampersand (&). For example:

<code name="MyCode" language="objectscript">
 <![CDATA[callrequest.Name = request.FirstName & " " & request.LastName]]>
</code>

To ensure you can properly suspend and restore execution of a business process, follow these guidelines when using the
<code> element:

• The execution time should be short; custom code should not tie up the general execution of the business process.

• Do not allocate any system resources (such as taking out locks or opening devices) without releasing them within the
same <code> element.

• If a <code> element starts a transaction, make sure that the same <code> element ends the transactions in all possible
scenarios; otherwise, the transaction can be left open indefinitely. This could prevent other processing or can cause
significant downtime.

• Do not rely on variables that are not part of the business process execution context. InterSystems IRIS automatically
restores the contents of the execution context whenever a business process is suspended and later resumed; any other
variables will be cleaned up.

Also, InterSystems strongly recommends that instead of including multiple lines of code within <code>, you invoke a class
method or a routine that contains the needed code. This approach makes it far easier to test and debug your processing.

Available Variables

The <code> element can refer to the following execution context variables and their properties. Do not use variables not
listed here.

Business Process and Data Transformation Language Reference 25

<code>

PurposeVariable

The context object is a general-purpose data container for the business process. context
has no automatic definition. To define the properties of this object, use the <context>
element. That done, you may refer to these properties anywhere inside the <process>
element using dot syntax, as in: context.Balance

context

The request object contains any properties of the original request message object that
caused this business process to be instantiated.You may refer to request properties
anywhere inside the <process> element using dot syntax, as in: request.UserID

request

The response object contains any properties that are required to build the final response
message object to be returned by the business process.You may refer to response
properties anywhere inside the <process> element using dot syntax, as in:
response.IsApproved. Use the <assign> element to assign values to these properties.

response

status is a value of type %Status that indicates success or failure. When a BPL business
process starts up, status is automatically assigned a value indicating success. As the
BPL business process runs, if at any time status acquires a failure value, InterSystems
IRIS immediately terminates the business process and writes the corresponding text
message to the Event Log. In general, this happens automatically, when unsuccessful
values are returned from <call> activities. However, BPL business process code can
initiate a sudden, but graceful exit by setting the status value using <assign> or <code>.
See the description at the end of this topic.

status

The process object represents the current instance of the BPL business process object
(an instance of the BPL class). This object has one property for each property defined
in that class.You can invoke methods of the process object; for example:
process.SendRequestSync()

process

CAUTION: Like all other execution context variable names, status is a reserved word in BPL. Do not use it in <code>
blocks except to cause the <code> block to exit.

Using <code> to Set the status Variable

status is a business process execution context variable of type %Status that indicates success or failure.

Note: Error handling for a BPL business process happens automatically, without your ever needing to test or set the
status value in the BPL source code. The status value is documented here in case you need to trigger a BPL
business process to exit under certain special conditions.

When a BPL business process starts up, status is automatically assigned a value indicating success. To test that status has
a success value, you can use the macro $$$ISOK(status) in ObjectScript. If the test returns a True value, status has a
success value.

As the BPL business process runs, if at any time status acquires a failure value, InterSystems IRIS immediately terminates
the business process and writes the corresponding text message to the Event Log. This happens regardless of how status
acquired the failure value. Thus, the best way to cause a BPL business process to exit suddenly, but gracefully is to set
status to a failure value.

Statements within a <code> activity can set status to a failure value. The BPL business process does not perceive the change
in the value of status until the <code> activity has fully completed. Therefore, if you want a failure status to cause an
immediate exit from a <code> activity, you must place a quit command in the <code> activity immediately after setting a
failure value for status.

status is available to a BPL business process anywhere inside the <process>. You can refer to status with the same syntax
as for any variable of the %Status type, that is: status

26 Business Process and Data Transformation Language Reference

BPL Elements

See Also
<call> and <sql>

Business Process and Data Transformation Language Reference 27

<code>

<compensate>
Invoke a <compensationhandler> from <catch> or <catchall>.

<scope> <throw fault='"BuyersRegret"'/> <faulthandlers> <catch
fault='"BuyersRegret"'> <compensate target="RestoreBalance"/> </catch>
</faulthandlers> <compensationhandlers> <compensationhandler
name="RestoreBalance"> <assign property='context.MyBalance'
value='context.MyBalance+1'/> </compensationhandler> </compensationhandlers>
</scope>

Details
ValueDescriptionAttribute or

Element

A string of 0 to
255 characters.

Required. The name of a <compensationhandler> that provides a
sequence of activities to undo previous actions.

target attribute

See “Common Attributes and Elements.”<annotation>
element

Description
The <compensate> element invokes a <compensationhandler> block by specifying its name as a target:

<compensate target="general"/>

<compensate> may only appear within <catch> or <catchall>. Its target value must match the name of a <compensation-
handler> within the same BPL business process.

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

28 Business Process and Data Transformation Language Reference

BPL Elements

<compensationhandlers>
Provide compensation handlers, each of which performs a sequence of activities to undo a previous action.

<scope> <throw fault='"BuyersRegret"'/> <faulthandlers> <catch
fault='"BuyersRegret"'> <compensate target="RestoreBalance"/> </catch>
</faulthandlers> <compensationhandlers> <compensationhandler
name="RestoreBalance"> <assign property='context.MyBalance'
value='context.MyBalance+1'/> </compensationhandler> </compensationhandlers>
</scope>

Elements
PurposeElement

Zero or more <compensationhandler> elements may appear inside the
<compensationhandlers> container. Each <compensationhandler> element
contains a specific sequence of BPL activities that undo a previous action.

<compensationhandler>

Description
In business process management, it is often necessary to reverse some segment of logic. This convention is known as
“compensation.” The ruling principle is that if the business process does something, it must be able to undo it. That is, if
a failure occurs, the business process must be able to compensate by undoing the action that failed. You need to be able to
unroll all of the actions from that failure point back to the beginning, as if the problem action never occurred. BPL enables
this with a mechanism called a compensation handler.

BPL <compensationhandler> blocks are somewhat like subroutines, but they do not provide a generalized subroutine
mechanism. You can “call” them, but only from <faulthandler> blocks, and only within the same <scope> as the <compen-
sationhandler> block. The <compensate> element invokes a <compensationhandler> block by specifying its name as a
target. Extra quotes are not needed for this syntax:

<compensate target="general"/>

Compensation handlers are only useful if you can undo the actions already performed. For example, if you transfer money
into the wrong account, you can transfer it back again, but there are some actions that cannot be neatly undone. You must
plan compensation handlers accordingly, and also organize them according to how far you want to roll things back.

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

Note: It is not possible to reverse the order of <compensationhandlers> and <faulthandlers>. If both blocks are provided,
<compensationhandlers> must appear first and <faulthandlers> second.

<compensationhandler> Attributes and Elements
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend, yend attribute

<annotation> element

See Also
<catch>, <catchall>, <compensate>, <faulthandlers>, <scope>, and <throw>.

Business Process and Data Transformation Language Reference 29

<compensationhandlers>

<context>
Define general-purpose properties in the business process execution context.

<context> <property name="P1" type="%String" /> <property name="P2"
type="%String" /> ... </context>

Elements
PurposeElement

Optional. Zero or more <property> elements may appear. Each defines one property of the
business process execution context.

<property>

Description
The life cycle of a business process requires it to have certain state information saved to disk and restored from disk,
whenever the business process suspends or resumes execution. A BPL business process supports the business process life
cycle with a group of variables known as the execution context.

The execution context variables include the objects called context, request, response, callrequest, callresponse and process;
the integer value synctimedout; the collection syncresponses; and the %Status value status. Each variable has a specific
purpose, as described in documentation for the <assign>, <call>, <code>, and <sync> elements.

Most of the execution context variables are automatically defined for the business process. The exception to this rule is the
general-purpose container object called context, which a BPL developer must define. Any value that you want to be persistent
and available everywhere within the business process should be declared as a property of the context object. You can do
this by providing <context> and <property> elements at the beginning of the BPL document, as follows. The resulting BPL
code is the same whether you use the Business Process Designer or type the code directly into the BPL document:

• When using the Business Process Designer, you can add properties of various types to the context object from the
Context tab to the right of the BPL diagram. Add whatever properties you need by clicking the plus-sign next to Context

properties. You can also edit or delete a property using the icons next to its name. The appropriate <context> and
<property> elements appear in the generated BPL for the business process.

• You can add <context> and <property> elements together at the beginning of the <process> element, as shown in the
following example.

<process request="Demo.Loan.Msg.Application" response="Demo.Loan.Msg.Approval">
 <context>
 <property name="BankName" type="%String"
 initialexpression="BankOfMomAndDad" />
 <property name="IsApproved" type="%Boolean"/>
 <property name="InterestRate" type="%Numeric"/>
 <property name="TheResults"
 type="Demo.Loan.Msg.Approval"
 collection="list"/>
 <property name="Iterator" type="%String"/>
 <property name="ThisResult" type="Demo.Loan.Msg.Approval"/>
 </context>
 ...
</process>

Each <property> element defines the name and data type for a property. For a list of available data type classes, see
“Parameters” in the chapter “Data Types” in Defining and Using Classes. You may assign an initial value in the <property>
element by providing an initialexpression attribute. Alternatively, you may assign values during business process execution,
using the <assign> element.

30 Business Process and Data Transformation Language Reference

BPL Elements

<continue>
Jump to the next iteration within a loop, without exiting the loop.

<continue/>

Details
DescriptionAttribute or Element

See “ “Common Attributes and Elements.” ”name, disabled, xpos, ypos, xend, yend attributes

<annotation> element

Description
BPL syntax permits any element that can contain a sequence of activities — <case>, <default>, <foreach>, <false>,
<sequence>, <true>, <until>, or <while> — to contain a <continue> element if desired.

The <continue> element allows the flow of control to jump to the next iteration of a loop, without completing the remaining
operations inside the current iteration. For example:

<foreach property="P1" key="K1">

 //...do various things...

 <if condition="somecondition">
 <true>
 <continue/>
 </true>
 </if>

 //...do various other things...

</foreach>

In the above example, it is the <true> element that contains the <continue> element. However, the loop affected by this
<continue> is actually the containing <foreach> loop.

The example works as follows: If on some pass through this loop, the <if> element finds “somecondition” to be true (that
is, equal to the integer value 1) then the flow of control passes to the <true> element inside the <if>. Upon encountering
the <continue> element, execution halts the current pass through the <foreach> loop, proceeds to the next item in the col-
lection (if there is a next item), and begins processing that next item from the beginning of the loop.

Loop activities that you might want to modify by using a <continue> element include <foreach>, <until>, and <while>.
The effect of <continue> for each type of loop element is to halt the current pass through the loop, jump to the condition
test for the loop, and allow that test and the type of loop to determine what to do next: continue looping, or exit the loop,
as normal for that type of loop. For example:

Behavior of <continue>Containing
Loop

Test for the next item in the collection. If an item is found, begin processing it from the
top of the loop. However, if there are no more items in the collection that match the test
condition, exit the loop.

<foreach>

Jump to the condition test at the bottom of the loop. If the condition is true, exit the loop;
if false, execute the statements in the loop.

<until>

Jump to the condition test at the top of the loop. If the condition is true, exit the loop; if
false, execute the statements in the loop.

<while>

Business Process and Data Transformation Language Reference 31

<continue>

See Also
<break>

32 Business Process and Data Transformation Language Reference

BPL Elements

<default>
Perform a set of activities when no matching condition can be found within a <switch> element.

<switch> <case> ... </case> ... <default> ... </default> </switch>

Details
DescriptionAttribute or Element

See Common Attributes and Elements.“ Note that the default
for name is “Default ”

name, disabled, xpos, ypos, xend, yend
attributes

<annotation> element

Optional. <default> may contain zero or more of the following
elements in any combination: <alert>, <assign>, <branch>,
<break>, <call>, <code>, <continue>, <delay>, <empty>,
<flow>, <foreach>, <if>, <label>, <milestone>, <reply>, <rule>,
<scope>, <sequence>, <sql>, <switch>, <sync>, <throw>,
<trace>, <transform>, <until>, <while>, <xpath>, or <xslt>.

Other elements

Description
A <switch> element contains a sequence of one or more <case> elements and an optional <default> element.

When present, the <default> element must be the last element in the <switch>. Correspondingly, in the Business Process
Designer, the <default> element must be the right-most option in the <switch> part of the diagram.

When a <switch> element is executed, it evaluates each <case> condition in turn. These conditions are logical expressions
in the scripting language of the containing <process> element. If any expression evaluates to the integer value 1 (true),
then the contents of the corresponding <case> element are executed; otherwise the expression for the next <case> element
is evaluated.

If no <case> condition is true, the contents of the <default> element are executed.

Activities within a <default> element can be any BPL activity listed above, including <assign> elements as in the example
below:

<switch name='Approved?'>
 <case name='No PrimeRate' condition='context.PrimeRate=""'>
 <assign name='Not Approved' property="response.IsApproved" value="0"/>
 </case>
 <case name='No Credit' condition='context.CreditRating=""'>
 <assign name='Not Approved' property="response.IsApproved" value="0"/>
 </case>
 <default name='Approved' >
 <assign name='Approved' property="response.IsApproved" value="1"/>
 <assign name='InterestRate'
 property="response.InterestRate"
 value="context.PrimeRate+10+(99*(1-(context.CreditRating/100)))">
 <annotation>
 <![CDATA[Copy InterestRate into response object.]]>
 </annotation>
 </assign>
 </default>
</switch>

Business Process and Data Transformation Language Reference 33

<default>

<delay>
Delay execution of a business process for a specified duration or until a future time.

<delay duration='"PT60S"'/> <delay until='"2003-10-19T10:10"'/>

Details
ValueDescriptionAttribute or Element

A string of one or more characters; for
example “PT60S” for 60 seconds or
“P1Y2M3DT10H30M” for 1 year, 2
months, 3 days, 10 hours, and 30
minutes. The <delay> element ignores
fractional seconds. If duration has a
value less than one second, it is treated
as 0 seconds.

Optional. Specifies the duration of the
delay as an expression that evaluates to
an XML duration value.*

duration attribute

A string of one or more characters; for
example “2003:10:19T10:10”

Optional. Specifies a future time at which
the delay will expire, as an expression
that evaluates to an XML dateTime
value.*

until attribute

See “ “Common Attributes and
Elements.” ”

name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

* For details, see appropriate entry in the Primitive Datatypes section of the W3C Recommendation XML Schema Part 2:
Datatypes Second Edition, which you can view at the following:

http://www.w3.org/TR/xmlschema-2/#duration

http://www.w3.org/TR/xmlschema-2/#dateTime

Description
The <delay> element suspends execution of a business process (or the current thread within a <flow>) for either a specified
duration or until a specific time. For example:

<sequence>
 <annotation>
 <![CDATA[Write the time now, and sixty seconds later.]]>
 </annotation>
 <trace value='"The time is: " & Now' />
 <delay duration='"PT60S"' />
 <trace value='"The time is: " & Now' />
</sequence>

The <delay> element causes the execution of a business process to pause for either a specific duration (specified by the
duration attribute) or until a specific future time (specified by the until attribute). You must provide either the duration
attribute or the until attribute, or no delay will take place.

During the delay period, execution of the current business process thread is suspended and the state of the business process
is saved to the database.

The format for values of duration and until is discussed at length in World Wide Web Consortium documents about XML
data types. For details, see the “Primitive Datatypes” section of the W3C Recommendation XML Schema Part 2: Datatypes

34 Business Process and Data Transformation Language Reference

BPL Elements

http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#dateTime

Second Edition, which you can view at http://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes. Some duration
examples are:

• PT60S or PT1M for one minute

• PT219S or PT3M39S for 3 minutes, 39 seconds

Whenever a <delay> element is executed, the BPL engine inserts the name of the <delay> element into the message header
so that it is visible in later Message Browser and Visual Trace displays.

Business Process and Data Transformation Language Reference 35

<delay>

http://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes

<empty>
Perform no action.

<empty />

Details
DescriptionAttribute or Element

See “Common Attributes and
Elements.”

name, disabled, xpos, ypos, xend, yend attributes

<annotation> element

Description
The <empty> element performs no operation. Its purpose is to serve as a placeholder within a BPL definition or as a place
to hold additional annotation without affecting the execution of the business process. For example.

<empty>
 <annotation>This is an empty element.
 </annotation>
</empty>

36 Business Process and Data Transformation Language Reference

BPL Elements

<false>
Perform a set of activities when the condition for an <if> element is false.

<if condition="0"> <true> ... </true> <false> ... </false> </if>

Details
DescriptionAttribute or Element

See “ “Common Attributes and Elements.” ”name, disabled, xpos, ypos,
xend, yend attributes

Optional. A text string that describes the element.<annotation> element

Optional. <false> may contain zero or more of the following elements in
any combination: <alert>, <assign>, <branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>, <flow>, <foreach>, <if>, <label>,
<milestone>, <reply>, <rule>, <scope>, <sequence>, <sql>, <switch>,
<sync>, <throw>, <trace>, <transform>, <until>, <while>, <xpath>, or <xslt>.

Other elements

Description
A <false> element is used within an <if> to contain elements that need to be executed if the condition is false.

Business Process and Data Transformation Language Reference 37

<false>

<faulthandlers>
Provide zero or more <catch> and one <catchall> element to catch faults and system errors.

<scope> <throw fault='"MyFault"'/> ... <faulthandlers> <catch
fault='"MyFault"'> ... </catch> <catch fault='"OtherFault"'>
 ... </catch> <catchall> ... </catchall> </faulthandlers>
 </scope>

Details
DescriptionAttribute or Element

See “ “Common Attributes and Elements.” ”name, disabled, xpos, ypos,
xend, yend attribute

There may be zero or more <catch> elements inside <faulthandlers>.
Each catches a specific, named fault produced by a <throw> element.

<catch> element

Catch a fault or system error that does not match any <catch>. If there
are no <catch> elements in <faulthandlers>, there must be a <catchall>.
Otherwise, <catchall> is optional.

<catchall> element

Description
To enable error handling, BPL defines an element called <scope>. A scope is a wrapper for a set of activities. This scope
may contain one or more activities, one or more fault handlers, and zero or more compensation handlers. The <faulthandlers>
element is intended to catch any errors that activities within the <scope> produce. The <catch> and <catchall> elements
within <faulthandlers> may provide <compensate> statements that invoke <compensationhandler> elements to compensate
for those errors.

When a <scope> provides no <faulthandlers> block, InterSystems IRIS automatically outputs the system error to the Event
Log. When a <scope> does contain a <faulthandlers> block, the BPL business process must output <trace> messages to
the Event Log for system error messages to appear there. System error messages appear on the Terminal console, in either
case.

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

Note: It is not possible to reverse the order of <compensationhandlers> and <faulthandlers>. If both blocks are provided,
<compensationhandlers> must appear first and <faulthandlers> second.

See Also
<catch>, <catchall>, <compensate>, <compensationhandlers>, <scope>, and <throw>.

38 Business Process and Data Transformation Language Reference

BPL Elements

<flow>
Perform activities in a non-determinate order.

<flow> <sequence name="thread1"> ... </sequence> <sequence name="thread2">
 ... </sequence> ... </flow>

Details
DescriptionAttribute or Element

See “ “Common Attributes and Elements.” ”name, disabled, xpos, ypos, xend, yend
attributes

<annotation> element

Optional. Zero or more <sequence> elements contain whatever
activities are needed for the <flow>. If no <sequence> elements
are provided, no action is taken by the <flow>.

<sequence> element

Description
The <flow> element specifies that each of the elements it contains are executed in a non-determinate order. A <flow> element
contains one or more <sequence> elements, each of which is referred to as a thread.

When you are using the Business Process Designer and you add a <flow> element to the business process, a <sequence>
element is automatically inserted inside the <flow>, as you can see by examining the generated BPL code.

If you need to temporarily disable one of the <sequence> elements within a <flow>, you can edit the generated BPL code
by setting the disabled attribute of the corresponding <sequence> element.

The following abbreviated example shows the usage of the <flow> element. In this hand-coded BPL example, the developer
has decided to use two parallel sequences inside the flow. Each is executed in a separate thread: thread1 and thread2.

<process>
 <flow>
 <sequence name="thread1">
 <call name="A" />
 <call name="B" />
 </sequence>
 <sequence name="thread2">
 <call name="C" />
 <call name="A" />
 </sequence>
 </flow>
 <call name="E" />
</process>

In this example, the <flow> element defines two threads, specified by <sequence> elements thread1 and thread2. The
order in which the two threads are executed is indeterminate (though, of course, the <call> elements within the <sequence>
elements are executed in sequential order).

If possible, the execution of threads is interlaced. For example, if the execution of one thread is suspended (say it is waiting
for a response from a asynchronous call), then execution of one of the other threads proceeds (if possible).

Note that, strictly speaking, the threads within a <flow> element do not execute at the same time: this is because only one
thread is given access to the business process execution context at a time, to preserve proper concurrency and data consistency.

Note: For more information about the business process execution context, see the <assign> element in this book, and
see Developing BPL Processes.

Business Process and Data Transformation Language Reference 39

<flow>

The <flow> element waits for all of its threads to complete before it allows execution to continue. After both threads in the
previous example are completed, execution continues and <call> element E is executed.

A thread within a <flow> element may contain additional, nested <flow> elements.

For information about using <sync> with <flow>, see documentation of the <sync> element.

40 Business Process and Data Transformation Language Reference

BPL Elements

<foreach>
Define a sequence of activities to be executed iteratively.

<foreach property="P1" key="K1"> ... </foreach>

Details
ValueDescriptionAttribute or Element

A string of one or
more characters.

Required.The collection property (list or array) to iterate
over. It must be the name of a valid object and property
in the execution context.

property attribute

A string of one or
more characters.

Required. The index used to iterate through the
collection. It must be a name of a valid object and
property in the execution context. It is assigned a value
for each element in the collection.

key attribute

See “Common Attributes and Elements.”name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Optional. <foreach> may contain zero or more of the
following elements in any combination: <alert>,
<assign>, <branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>, <flow>, <foreach>, <if>,
<label>, <milestone>, <reply>, <rule>, <scope>,
<sequence>, <sql>, <switch>, <sync>, <throw>, <trace>,
<transform>, <until>, <while>, <xpath>, or <xslt>.

Other elements

Description
The <foreach> element defines a sequence of activities that are executed iteratively, once for every element within a spec-
ified collection property. For example:

<foreach property="callrequest.Location" key="context.K1">
 <assign property="total"
 value="context.total+context.prices.GetAt(context.K1)"/>
</foreach>

The <foreach> element can refer to the following variables and their properties. Do not use variables not listed here.

PurposeVariable

The context object is a general-purpose data container for the business process. context has no
automatic definition. To define properties of this object, use the <context> element. That done,
you may refer to these properties anywhere inside the <process> element using dot syntax, as
in: context.Balance

context

The request object contains any properties of the original request message object that caused
this business process to be instantiated.You may refer to request properties anywhere inside
the <process> element using dot syntax, as in: request.UserID

request

Business Process and Data Transformation Language Reference 41

<foreach>

PurposeVariable

The response object contains any properties that are required to build the final response message
object to be returned by the business process.You may refer to response properties anywhere
inside the <process> element using dot syntax, as in:response.IsApproved. Use the <assign>
element to assign values to these properties.

response

Note: There is more information about the business process execution context in documentation of the <assign> element.

You can fine-tune loop execution by including <break> and <continue> elements within a <foreach> element. See the
descriptions of these elements for details.

42 Business Process and Data Transformation Language Reference

BPL Elements

<if>
Evaluate a condition and perform one action if true, another if false.

<if condition="1"> <true> ... </true> <false> ... </false> </if>

Details
ValueDescriptionAttribute or Element

An expression that evaluates to
the integer value 1 (if true) or 0 (if
false). This expression must use
the scripting language specified
by the containing <process>
element.

Required. An expression that, if true,
causes the contents of the <true>
element to execute. If false, the contents
of the <false> element are executed.

condition attribute

See “Common Attributes and
Elements.”

name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Optional. If the condition is true,
activities inside the <true> element are
executed.

<true> element

Optional. If the condition is false,
activities inside the <false> element are
executed.

<false> element

Description
The <if> element evaluates an expression and, depending on its value, executes one of two sets of activities (one if the
expression evaluates to a true value, the other if it evaluates to a false value).

The <if> element may contain a <true> element and a <false> element which define the actions to execute if the expression
evaluates to true or false, respectively.

If both <true> and <false> elements are provided, they may appear within the <if> element in any order.

If the condition is true and there is no <true> element, or if the condition is false and there is no <false> element, no activity
results from the <if> element.

The following example shows an <if> element used to coordinate the results of a combination of <call> and <sync> elements
used together.

<sequence name="thread1">
 <call name="A" />
 <call name="B" />
 <sync calls="A,B" type="all" timeout="10" />
 // Did the synchronization time out before it finished?
 <if condition='synctimedout="1"'>
 <true>
 <trace value="thread1 timeout: Call A or B did not return." />
 </true>
 // If not, then the calls came back, so assign the results.
 <false>
 <assign property="context.TheResultsFromEast"
 value='syncresponses.GetAt("A")'
 action="append"/>
 <assign property="context.TheResultsFromWest"
 value='syncresponses.GetAt("B")'
 action="append"/>

Business Process and Data Transformation Language Reference 43

<if>

 </false>
 </if>
 </sequence>

The <if> activity in this example has a condition that tests the execution context variable synctimedout against the integer
value 1. synctimedout can have the value 0, 1, or 2 as described in the documentation for <call>. If the two values are equal,
this <if> condition receives the integer value 1 and statements inside the <true> element are executed. Otherwise, statements
inside the <false> element are executed.

Note: There is more information about the business process execution context in documentation of the <assign> element.

44 Business Process and Data Transformation Language Reference

BPL Elements

<label>
Provide a destination for a conditional branch operation.

<label name="JumpToMe" />

Details
ValueDescriptionAttribute or Element

A string of 0 to 255
characters.

Required. The name of this label. This name must
be unique across the entire BPL business process.

name attribute

See “Common Attributes and Elements.”disabled, xpos, ypos, xend,
yend attributes

<annotation> element

Description
The <label> element provides the destination for a conditional <branch> element.

For details, see the documentation for <branch>.

Business Process and Data Transformation Language Reference 45

<label>

<milestone>
Store a message to acknowledge a step achieved by a business process.

<milestone value='"The applicant has been notified of the interest rate."' />

Details
ValueDescriptionAttribute or Element

A string of one or more characters.
May be an expression or a literal
string. If this is an expression, it must
use the scripting language specified
by the containing <process> element.

Required. This is the text for the
milestone message. It can be a literal
text string or an expression to be
evaluated.

value attribute

See “Common Attributes and
Elements.”

name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Description
A <milestone> activity writes a message to the InterSystems IRIS database. <milestone> works very much like <trace>,
but unlike <trace> messages, <milestone> messages exist only while the associated business process is running. After the
business process exits, all messages generated by <milestone> activities are removed.

Often a programmer uses <trace> messages for diagnostic purposes, whereas <milestone> messages can be helpful to track
the progress of a correctly operating, long-running business process.

You can retrieve <milestone> messages by examining values in the Ens.Milestone global. The global is defined only if
your production has issued <milestone> messages. To obtain the value of Ens.Milestone:

• Programmatically, use the information in the “Using Multidimensional Storage (Globals)” chapter in Using InterSystems
IRIS Multidimensional Storage.

• From the Management Portal, navigate to the System Explorer > Globals page, ensure that the Namespaces option is
selected, and click on the name of the namespace where your production runs. The View Globals option is selected by
default.

46 Business Process and Data Transformation Language Reference

BPL Elements

<parameters>
Specifies the parameters for another BPL element as a set of name-value pairs.

<parameters> <parameter name='MAXLEN' value='1024' /> <parameter name='MINLEN'
 value='1' /> </parameters>

Elements
PurposeElement

Zero or more <parameter> elements may appear inside the <parameters> container. Each
<parameter> element defines one parameter. Each <parameter> element has two attributes,
name and value, as described below.

<parameter>

Description
The optional <parameters> element is valid only within <property> or <xslt>. <parameters> defines the parameters for its
containing BPL element as a set of name-value pairs:

• Within <context>, <parameters> contains the data type parameters for a <property> that you are defining in the business
process execution context. There is a detailed explanation of the business process execution context in documentation
of the <assign> element.

• Within <xslt>, <parameters> contains any XSLT name-value pairs that you wish to pass to the stylesheet that controls
the XSLT transformation.

<parameters> does not support any BPL attributes. It is simply a container for zero or more <parameter> element, one for
each parameter. You may provide as many <parameter> elements as you wish, but all must appear within the same
<parameters> block. For example:

<context>
 <property name='Test' type='%Integer' initialexpression='342' >
 <parameters>
 <parameter name='MAXVAL' value='1000' />
 </parameters>
 </property>
 <property name='Another' type='%String' initialexpression='Yo' >
 <parameters>
 <parameter name='MAXLEN' value='2' />
 <parameter name='MINLEN' value='1' />
 </parameters>
 </property>
</context>

<parameter> Attributes
ValueDescriptionAttribute

A string of one or more
characters.

Required. The name of this parameter:

• Within <property>, name identifies a data type
parameter for the property. For valid names, see
“Parameters” in the chapter “Data Types” Defining
and Using Classes.

• Within <xslt>, name must be the name of a valid
XSLT parameter.

name attribute

Business Process and Data Transformation Language Reference 47

<parameters>

ValueDescriptionAttribute

A string of one or more
characters.

Optional. The value to assign to the parameter.value attribute

See Also
<context> and <xslt>

48 Business Process and Data Transformation Language Reference

BPL Elements

<process>
Define a business process.

<process request="MyApp.Request" response="MyApp.Response"> <context> ...
</context> <sequence> ... </sequence> </process>

Details
ValueDescriptionAttribute or

Element

A string of one or more
characters.

Required. The name of the request class, specifying the
type of the initial request to this business process.

request attribute

A string of one or more
characters.

Optional. The name of the response class, specifying the
type of the response returned by this business process, if
any.

response attribute

A Boolean value: 1 (true)
or 0 (false). The default is
false.

Optional. Setting this value to 1 (true) designates this
<process> as a reusable component.

component
attribute

A class name.Optional. Lets you specify the superclass for your business
process context. This is useful if you have many different
business processes that share the same context variables.
The idea is that you subclass Ens.BP.Context yourself,
adding your own properties, then use that class for the
contextsuperclass. If not specified, Ens.BP.Context is the
default.

contextsuperclass
attribute

A positive integer.Optional. Refers to the graphical representation of the
business process in the Business Process Designer.

height attribute

Optional. A comma-delimited list of include file names, so
that you can use macros in your <code> segments.

includes attribute

. "objectscript"Optional. Should be "objectscript"language attribute

A string, either “manual”
or “automatic” . If not
specified, the default
layout is “automatic.”

Optional.The name of the layout style used in BPL diagrams
for this business process. The value “automatic” indicates
that the Business Process Designer and BPL Viewer will
choose layouts for the diagram elements. The value
“manual” overrides the tools to use the exact layout that
you specify.

layout attribute

A positive integer. May be
a literal integer, or an
expression that evaluates
to an integer.

Optional. An integer that expresses a version number.
Higher values indicate later versions. If an expression, the
version attribute value must use ObjectScript.

version attribute

A positive integer.Optional. Refers to the graphical representation of the
business process in the Business Process Designer.

width attribute

Business Process and Data Transformation Language Reference 49

<process>

ValueDescriptionAttribute or
Element

Optional. Defines general-purpose properties in the business
process execution context. For information about the
business process execution context, see the <assign>
element in this book, and see Developing BPL Processes.

<context>
element

Optional. Zero or more <sequence> elements may appear.
Each defines actions that the business process can perform.

<sequence>
element

Description
The <process> element is the outermost element for a BPL document. All the other BPL elements are contained within a
<process> element.

A business process consists of an execution context (defined by the <context> element) and a sequence of activities (defined
by the <sequence> element).

The request attribute defines the type (class name) for the business process’s initial request. The response attribute defines
the type (class name) for the eventual response from the business process. The request attribute is required, but the response

attribute is optional, since the business process might not return a response.

Execution Context

The life cycle of a business process requires it to have certain state information saved to disk and restored from disk,
whenever the business process suspends or resumes execution. A BPL business process supports the business process life
cycle with a group of variables known as the execution context.

The execution context variables include the objects called context, request, response, callrequest, callresponse and process;
the integer value synctimedout; the collection syncresponses; and the %Status value status. Each variable has a specific
purpose, as described in documentation for the <assign>, <call>, <code>, and <sync> elements.

Example

The following sample business process provides a <sync> element to synchronize several <call> elements. Further activities
within the <process> element are replaced by ellipses (...) near the end of the example:

<process request="Demo.Loan.Msg.Application">
<context>
 <property name="BankName" type="%String"/>
 <property name="IsApproved" type="%Boolean"/>
 <property name="InterestRate" type="%Numeric"/>
 <property name="TheResults" type="Demo.Loan.Msg.Approval" collection="list"/>
 <property name="Iterator" type="%String"/>
 <property name="ThisResult" type="Demo.Loan.Msg.Approval"/>
</context>
<sequence>
 <trace value='"received application for "_request.Name'/>
 <call name="BankUS" target="Demo.Loan.BankUS" async="1">
 <annotation>
 <![CDATA[Send an asynchronous request to Bank US.]]>
 </annotation>
 <request type="Demo.Loan.Msg.Application">
 <assign property="callrequest" value="request"/>
 </request>
 <response type="Demo.Loan.Msg.Approval">
 <assign property="context.TheResults"
 value="callresponse"
 action="append"/>
 </response>
 </call>

 <call name="BankSoprano" target="Demo.Loan.BankSoprano" async="1">
 <annotation>
 <![CDATA[Send an asynchronous request to Bank Soprano.]]>
 </annotation>
 <request type="Demo.Loan.Msg.Application">
 <assign property="callrequest" value="request"/>

50 Business Process and Data Transformation Language Reference

BPL Elements

 </request>
 <response type="Demo.Loan.Msg.Approval">
 <assign property="context.TheResults"
 value="callresponse"
 action="append"/>
 </response>
 </call>

 <call name="BankManana" target="Demo.Loan.BankManana" async="1">
 <annotation>
 <![CDATA[Send an asynchronous request to Bank Manana.]]>
 </annotation>
 <request type="Demo.Loan.Msg.Application">
 <assign property="callrequest" value="request"/>
 </request>
 <response type="Demo.Loan.Msg.Approval">
 <assign property="context.TheResults"
 value="callresponse"
 action="append"/>
 </response>
 </call>

 <sync name='Wait for Banks'
 calls="BankUS,BankSoprano,BankManana"
 type="all"
 timeout="5">
 <annotation>
 <![CDATA[Wait for responses. Wait up to 5 seconds.]]>
 </annotation>
 </sync>
 <trace value='"sync complete"'/>
 ...
</sequence>
</process>

Replies

The primary response from a business process is the response it returns to the request that originally invoked the specific
business process instance. Normally, the business process returns its primary response automatically, as soon as it is done
executing. However, the <reply> element can be used to return the primary response sooner. This can be useful if the
response needed by the original caller is ready to be returned, but there is additional work for the business process to perform
as a result of the original call.

Language

The <process> element defines the scripting language used by a business process by providing a value for the language

attribute: The value shouold be "objectscript". Any expressions found in the business process, as well as lines of code
within <code> elements, must use the specified language.

Versioning

Developers can update the version number for a BPL business process to indicate that its new functionality is incompatible
with previous versions. A higher number indicates later versions. There is no automatic versioning of BPL business processes.
A developer manually updates the value of the version attribute within the BPL <process> element to highlight the fact
that the new code contains changes that are incompatible with previous versions of the same business process. Examples
include adding or deleting properties within the business process <context>, or changing the flow of activities within the
business process <sequence>.

Prior versions of the same BPL business process that have instances already executing continue to execute their original
activities, with their original context. New versions use their own context and their own activities. InterSystems IRIS
achieves this by generating new context and thread classes for each version. The version appears as a subpackage in the
generated class hierarchy. For example, if you have a class MyBPL, version 3 generates MyBPL.V3.Context and
MyBPL.V3.Thread1.

Layout

By default, when a user opens a BPL diagram in the Business Process Designer, the tool display the diagram using automatic
layout arrangements. These automatic choices may or may not be appropriate for a particular drawing. If you suspect that

Business Process and Data Transformation Language Reference 51

<process>

this may be an issue for your diagram, you can disable automatic layout to ensure that your diagram always displays with
exactly the layout you want.

The most direct way to control the layout of your diagram is to clear the Auto arrange check box on the Preferences tab.

You can also click the General tab and choose either Automatic or Manual for the Layout. The “manual” selection preserves
the exact position of each element each time you save the diagram, so that when the diagram is displayed in the Business
Process Designer, it does not take on any layout characteristics except any that you specify.

Problems in scrolling through a business process diagram in the Business Process Designer can be fixed by adjusting the
height or width attributes of the <process> element. You can do this using the General tab as for the layout attribute.

52 Business Process and Data Transformation Language Reference

BPL Elements

<property>
Define a property within the <context> element for a business process.

<property name='Test' type='%Integer' initialexpression='342' > <parameters>
<parameter name='MAXVAL' value='1000' /> </parameters> </property>

Details
ValueDescriptionAttribute or

Element

A string of one or more
characters.

Required. The name of this property. It must be a valid
property name.

name attribute

A string of one or more
characters giving the name
of the class.

Optional. The name of the class that specifies the type of
this property. It can be a data type class (%String) or a
serial or persistent class.

type attribute

An expression that provides
a valid value for the property.
See the discussion below.

Optional. This ObjectScript expression is evaluated to
provide a default value for the property.

initialexpression
attribute

1 (create) or 0 (do not create)Optional. Acts as a “create” flag for the property. If not
specified, the default is 0 (do not create).

instantiate
attribute

A literal string, either “ list ” ,
“array”, “binarystream”, or
“characterstream”

Optional. If present, specifies that this property is a
collection of a certain type.

collection
attribute

An optional <parameters> element may appear. Inside
the <parameters> container, zero or more <parameter>
elements may appear. Each <parameter> element defines
one data type parameter for the property by providing a
parameter name and value. For valid names and values,
see “Parameters” section in the chapter “Data Types” in
Defining and Using Classes.

<parameters>

Description
The <property> element defines a property within the business process execution context.

The life cycle of a business process requires it to have certain state information saved to disk and restored from disk,
whenever the business process suspends or resumes execution. A BPL business process supports the business process life
cycle with a group of variables known as the execution context.

The execution context variables include the objects called context, request, response, callrequest, callresponse and process;
the integer value synctimedout; the collection syncresponses; and the %Status value status. Each variable has a specific
purpose, as described in documentation for the <assign>, <call>, <code>, and <sync> elements.

Most of the execution context variables are automatically defined for the business process. The exception to this rule is the
general-purpose container object called context, which a BPL developer must define. Any value that you want to be persistent
and available everywhere within the business process should be declared as a property of the context object. You can do
this by providing <context> and <property> elements at the beginning of the BPL document. Each <property> element
defines one property of the context object.

A <property> element must provide a name.

Business Process and Data Transformation Language Reference 53

<property>

For non-collection properties, the initialexpression and instantiate attributes dictate how the object will be initialized. If the
instantiate attribute has the integer value 1 (true), then a call to “new” the object will be generated. If an initialexpression

attribute is specified as well, then the result of this expression will be assigned to the object.

The instantiate attribute should be used to initialize properties that can be instantiated, whereas the initialexpression attribute
should be used to initialize data type classes such as %String. For string values, be sure to provide the string quotes wrapped
inside another set of quotes. That is: initialexpression='"hello"' to set an initial string value of "hello".

If the collection attribute is set (“ list” , “array”, “binarystream”, or “characterstream”) the property is automatically
instantiated as a collection of that type.

The following example shows a set of <property> elements within the <context> element at the beginning of a business
process:

<process request="Demo.Loan.Msg.Application" response="Demo.Loan.Msg.Approval">
 <context>
 <property name="BankName" type="%String"
 initialexpression="BankOfMomAndDad" />
 <property name="IsApproved" type="%Boolean"/>
 <property name="InterestRate" type="%Numeric"/>
 <property name="TheResults"
 type="Demo.Loan.Msg.Approval"
 collection="list"/>
 <property name="Iterator" type="%String"/>
 <property name="ThisResult" type="Demo.Loan.Msg.Approval"/>
 </context>
 ...
</process>

Each <property> element defines the name and data type for a property. For a list of available data type classes, see
“Parameters” in the chapter “Data Types” in Defining and Using Classes. <property> may assign an initial value by
providing an initialexpression attribute. Alternatively, you may assign values during business process execution, using the
<assign> element.

See Also
<parameters>

54 Business Process and Data Transformation Language Reference

BPL Elements

<reply>
Send a response from a business process before its execution is complete.

<reply/>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend, yend attributes

<annotation> element

Description
The “primary response” from a business process is the response it returns to the request that originally invoked the specific
business process instance. Normally, the business process will return its primary response automatically, as soon as it is
done executing. However, the <reply> element can be used to return the primary response sooner. This can be useful if the
response needed by the original caller is ready to be returned, but there is additional work for the business process to perform
as a result of the original call.

The <reply> element returns the response object from the business process execution context, so a business process must
use the <assign> element to assign values to properties on the response object, prior to making a <reply>.

Note: There is more information about the business process execution context in the documentation for <assign>.

Business Process and Data Transformation Language Reference 55

<reply>

<request>
Prepare a request within a <call> element.

<call name="Call" target="MyApp.MyOperation" async="1"> <request
type="MyApp.Request"> ... </request> <response type="MyApp.Response">
... </response> </call>

Details
ValueDescriptionAttribute or Element

A string of one or more
characters.

Required. The name of the request message class.type attribute

A string of 0 to 255
characters.

Optional. The name of the <request> element.name attribute

Optional. <request> may contain zero or more of the
following elements in any combination: <assign>,
<empty>, <milestone>, or <trace>.

Other elements

Description
A <request> element is a required child element of <call>. Inside the <call> context, the <request> element specifies the
type (class name) of the request to send. The <request> element can also contain one or more <assign> elements. Each of
these assigns a value to a property on an object in the business process execution context. For example:

<call name="FindSalary" target="MyApp.PayrollApp" async="1">
 <request type="MyApp.SalaryRequest">
 <assign property="callrequest.Name" value="request.Name" />
 <assign property="callrequest.SSN" value="request.SSN" />
 </request>
 <response type="MyApp.SalaryResponse">
 <assign property="context.Salary" value="callresponse.Salary" />
 </response>
</call>

The intention of any <assign> elements found within a <request> element is usually to assign values to properties on the
callrequest object. This object is the member of the business process execution context that acts as a container for the
properties of the request object used for the call. However, properties on the context, request, and response objects can also
be set, appended, or otherwise manipulated in an <assign> element inside a <request>.

For further discussion of the business process execution context, see the documentation for <call> and <assign>.

See Also
<process> and <reply>

56 Business Process and Data Transformation Language Reference

BPL Elements

<response>
Handle a response received within a <call> element.

<call name="Call" target="MyApp.MyOperation" async="1"> <request
type="MyApp.Request"> ... </request> <response type="MyApp.Response">
... </response> </call>

Details
ValueDescriptionAttribute or

Element

A string of one or
more characters.

Required. The name of the response message class.type attribute

A string of 0 to 255
characters.

Optional. The name of the <response> element.name attribute

Optional. <response> may contain zero or more of the following
elements in any combination: <assign>, <empty>, <milestone>,
or <trace>.

Other elements

Description
A <response> element is an optional child element of <call>. Inside the <call> context, the <response> element specifies
the type (class name) of the response to return from the call. The <response> element can also contain one or more <assign>
elements. For example:

<call name="FindSalary" target="MyApp.PayrollApp" async="1">
 <request type="MyApp.SalaryRequest">
 <assign property="callrequest.Name" value="request.Name" />
 <assign property="callrequest.SSN" value="request.SSN" />
 </request>
 <response type="MyApp.SalaryResponse">
 <assign property="context.Salary" value="callresponse.Salary" />
 </response>
</call>

When a call returns a response to the calling business process, any output parameters from the message type named in the
<response> element become properties of the callresponse object in the business process execution context. Since callresponse
only has meaning inside the <response> element, to preserve these values the <response> element must provide <assign>
elements that assign callresponse values to properties of other, more permanent objects in the business process execution
context, usually context or response.

For further discussion, see the documentation for <call> and <assign>.

While a <request> element is required inside every <call>, a <response> is not. If the <response> element is omitted from
a <call> element, no response is returned from the <call>, even if the <request> type is designed to return a response. When
the <request> is asynchronous, the <assign> elements within the body of the <response> element are executed only after
the call response is received. There is no guarantee when this will occur, so a business process will typically use the <sync>
element to wait for an asynchronous response.

If a response is not received within the timeout period specified by the <sync> element, then the assignments defined by
the corresponding <response> block will not be executed. The response itself will be marked with a status of Discarded.

See Also
<process> and <reply>

Business Process and Data Transformation Language Reference 57

<response>

<rule>
Refer to a production business rule class.

<rule name="ApproveLoan" rule="LoanApproval"
resultLocation="context.Answer" reasonLocation="context.Reason"> </rule>

Details
ValueDescriptionAttribute or Element

A string of one or
more characters.

Required. The name of the <rule> element.name attribute

A string of one or
more characters.

Required. The name of the business rule to be
executed. This must be a valid rule within the
namespace; see “ Identifying the Rule”, below. If
the rule is not defined or otherwise cannot be
found at runtime, the rule will return a default
value of "" (an empty string).

rule attribute

A string of one or
more characters.

Optional. If defined, this is an expression that
identifies the object to pass to the rules engine;
see “ Identifying the Context” , below. For exam-
ple:

context.MyObject

By default the rule passes the business process
execution context to the rules engine.

ruleContext attribute

The name of a
valid property and
object, usually
within the
business process
execution
context.

Optional.The location in which to store the return
value of the rule.Typically this is a property within
the business process execution context; that is,
context.MyValue.

resultLocation attribute

A string of zero or
more characters.

Optional.The location in which to store the reason
returned by the rule. The rule reason is a string
indicating why a business rule reached its
decision. For example, “Rule 1” or “Default”. If the
business rule is empty (for example, it is a rule
set that contains no rules) then the reason given
for the decision is “Rule Missing.”

reasonLocation attribute

See “Common Attributes and Elements.”disabled, xpos, ypos, xend, yend
attributes

<annotation> element

58 Business Process and Data Transformation Language Reference

BPL Elements

Description
The <rule> element invokes a business rule from a business process. When a <rule> executes, it invokes its associated
business rule (named by the rule attribute) and gets its response immediately (in the same manner as a <code> or <assign>
activity).

Identifying the Rule

When you use the <rule> element in BPL, the value of the rule attribute can be either of the following:

• A simple Rule Name:

MyRule

• A full Package Name plus Rule Name combination:

MyClassPackage.Organization.Levels.MyRule

If any <rule> element identifies a simple Rule Name, InterSystems IRIS automatically prepends a Package Name that is
equal to the full package and class name of the BPL business process that contains that <rule> element. That is:

BPLFullPackageAndClassName.MyRule

This combination must identify a valid rule within the namespace, or the return value of the <rule> will be a null string.

Identifying the Context

By default, the ruleContext passed to the rule is the business process execution context. If you specify a different object as
a context, there are some restrictions on this object: It must have a property called %Process of type Ens.BusinessProcess;
this is used to pass the business process calling context to the rules engine. You do not need to set the value of this property,
but it must be present. Also, the object must match what is expected by the rule itself. No checking is done to ensure this;
it is up to the developer to set this up correctly.

A Simple Example

The following is a BPL excerpt showing the use of the <rule> activity with a <switch> element to process the results from
the rule:

<sequence>
 <rule name="ExecuteRule"
 rule="MyRule"
 resultLocation="context.MyResult" />
 <switch>
 <case condition="context.MyResult=1">
 <!-- ...Rule is true... -->
 </case>
 <default>
 <!-- ... Rule is false... -->
 </default>
 </switch>
</sequence>

The <rule> activity in this example returns a Boolean value (true or false) according to InterSystems IRIS conventions.
That is, an integer value of 1 means true; 0 means false. All rules return a single value, as in this example, but the type need
not be Boolean. The single value returned from a rule may be any literal value such as an integer number, decimal number,
or text string.

Return Values

The result and reason for the result are stored in the variables identified by the resultLocation and reasonLocation attributes,
respectively. Usually, these attributes give the names of properties in the context variable. This is the general-purpose,
persistent variable that you define at the beginning of the BPL business process using <context> and <property> elements.

Business Process and Data Transformation Language Reference 59

<rule>

See Also
Developing Business Rules

60 Business Process and Data Transformation Language Reference

BPL Elements

<sequence>
Perform activities in sequential order.

<sequence> ... </sequence>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos,
xend, yend attribute

<annotation> element

Optional. <sequence> may contain zero or more of the following elements
in any combination: <alert>, <assign>, <branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>, <flow>, <foreach>, <if>, <label>,
<milestone>, <reply>, <rule>, <scope>, <sequence>, <sql>, <switch>,
<sync>, <throw>, <trace>, <transform>, <until>, <while>, <xpath>, or <xslt>.

Other elements

Description
A <sequence> element is used within a <process> or a <flow> to contain elements that need to be executed in sequential
order.

<sequence> and <process>

Every BPL document must have at least one <sequence> element within its <process> element that specifies the main
sequence of activities for the business process. For example:

<process>
 <sequence>
 <call name="A" />
 <call name="B" />
 </sequence>
</process>

When you use the Business Process Designer, as you add activities between the <start> and <end> elements of a new, top-
level BPL diagram, everything you add is contained within a single top-level <sequence> that the BPL code generator
places inside the <process> element in the generated code. Such a <sequence> is shown in the preceding example. The
<call> element A is executed first, followed by the <call> element B.

When you use the Business Process Designer, if you need to temporarily disable the top-level <sequence> within a <process>,
you can disable it in Studio in the generated BPL code by adding the disabled attribute to the corresponding <sequence>
element.

Nested <sequence> Elements

A <sequence> can contain other sequences. Nested <sequence> elements do not start additional execution threads; for that
you need the <flow> element. However, you can use superfluous nested <sequence> elements as a means to group items
within a BPL document. For example:

<process>
 <sequence>
 <sequence>
 <call name="A" />
 <call name="B" />
 </sequence>
 </sequence>
</process>

Business Process and Data Transformation Language Reference 61

<sequence>

Nested <sequence> elements have no effect on the code generated for the business process. The BPL diagram, however,
displays such nested sequences as a single <sequence> icon. You can drill down into the <sequence> icon to view the elements
contained within.

<sequence> and <flow>

When you are using the Business Process Designer and you add a <flow> element to the business process, a <sequence>
element is automatically inserted inside the <flow>, as you can see by examining the generated BPL code. You may add
additional <sequence> elements to the flow; in fact, each branch of the <flow> must be enclosed within its own <sequence>
element.

If you need to temporarily disable one of the <sequence> elements within a <flow>, you can do it in Studio in the generated
BPL code by adding the disabled attribute and setting it to true in the corresponding <sequence> element.

62 Business Process and Data Transformation Language Reference

BPL Elements

<scope>
Define the error handling mechanisms for a sequence of activities.

<scope> <throw fault='"MyFault"'/> ... <faulthandlers> <catch
fault='"MyFault"'> ... </catch> </faulthandlers> </scope>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Optional. <scope> may contain zero or more of the following elements in
any combination: <alert>, <assign>, <branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>, <flow>, <foreach>, <if>, <label>, <milestone>,
<reply>, <rule>, <scope>, <sequence>, <sql>, <switch>, <sync>, <throw>,
<trace>, <transform>, <until>, <while>, <xpath>, or <xslt>.

Other elements

Description
To enable error handling, BPL defines an element called <scope>. A scope is a wrapper for a set of activities. This scope
may contain one or more activities, one or more fault handlers, and zero or more compensation handlers. The fault handlers
and are intended to catch any errors that activities within the <scope> produce. The fault handlers may invoke compensation
handlers to compensate for those errors.

The following example provides a <scope> with a <faulthandlers> block that includes a <catchall>:

XData BPL
{
<process language='objectscript'
 request='Test.Scope.Request'
 response='Test.Scope.Response' >
 <sequence>
 <trace value='"before scope"'/>
 <scope>
 <trace value='"before assign"'/>
 <assign property="SomeProperty" value="1/0"/>
 <trace value='"after assign"'/>
 <faulthandlers>
 <catchall>
 <trace value='"in catchall faulthandler"'/>
 <trace value=
 '"%LastError "_
 $System.Status.GetErrorCodes(..%Context.%LastError)_
 " : "_
 $System.Status.GetOneStatusText(..%Context.%LastError)'
 />
 </catchall>
 </faulthandlers>
 </scope>
 <trace value='"after scope"'/>
 </sequence>
</process>
}

When a <scope> provides no <faulthandlers> block, InterSystems IRIS automatically outputs the system error to the Event
Log. When a <scope> does contain a <faulthandlers> block, the BPL business process must output <trace> messages to
the Event Log for system error messages to appear there. System error messages do appear on the Terminal console, in
either case.

It is possible to nest <scope> elements. An error or fault that occurs within the inner scope may be caught within the inner
scope, or the inner scope may ignore the error and allow it to be caught by the <faulthandlers> block in the outer scope.

Business Process and Data Transformation Language Reference 63

<scope>

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

See Also
<catch>, <catchall>, <compensate>, <compensationhandlers>, <faulthandlers>, and <throw>.

64 Business Process and Data Transformation Language Reference

BPL Elements

<sql>
Execute an embedded SQL SELECT statement.

<sql name="LookUp"> <![CDATA[SELECT SSN INTO :context.SSN FROM
MyApp.PatientTable WHERE PatID = :request.PatID]]> </sql>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend, yend
attributes

<annotation> element

Description
The <sql> element executes an arbitrary embedded SQL SELECT statement from within the execution of a business process.

The <sql> element is especially powerful for performing lookup operations using tables. For example, suppose the primary
request coming into a business process provides a PatId property that indicates a Patient Identity number, and you need to
find the matching Social Security number (SSN) before the business process can perform work. If you have available a
PatientTable table relating PatId with SSN, you can perform the lookup using the following <sql> element:

<process>
 <sql name="LookUp"><![CDATA[
 SELECT SSN INTO :context.SSN
 FROM MyApp.PatientTable
 WHERE PatID = :request.PatID
]]>
 </sql>
</process>

Where the execution context variable context has an SSN property that is suitable to receive the result of the SQL query.
The execution context variable request automatically contains the PatId property, as it always contains the properties
received in the primary request object.

Note: For more information about the business process execution context, see the <assign> element in this book, and
see Developing BPL Processes.

If you maintain a local copy of the PatientTable within the InterSystems IRIS database, the above example is especially
efficient, as it can be executed without using any expensive network operations or additional middleware.

To use the <sql> element effectively, keep the following tips in mind:

• Always use the fully qualified name of the table, including both the SQL schema name and table name, as in:

MyApp.PatientTable

Where MyApp is the SQL schema name and PatientTable is the table name.

• The contents of the <sql> element must contain a valid embedded SQL SELECT statement.

It is convenient to place the SQL query within a CDATA block so that you do not have to worry about escaping special
XML characters.

• Any tables listed in the SQL query’s FROM clause must either be stored within the local InterSystems IRIS database
or linked to an external relational database using the SQL Gateway.

• Within the INTO and WHERE clauses of the SQL query, you can refer to a property of one of the variables in the
business process execution context by placing a “ :” in front of the variable name. For example:

Business Process and Data Transformation Language Reference 65

<sql>

<sql name="LookUp"><![CDATA[
 SELECT Name INTO :response.Name
 FROM MainFrame.EmployeeRecord
 WHERE SSN = :request.SSN AND City = :request.Home.City
]]>
</sql>

• Only the first row returned by the query will be used. Make sure that your WHERE clause correctly specifies the
desired row.

66 Business Process and Data Transformation Language Reference

BPL Elements

<switch>
Evaluate a set of conditions to determine which of several actions to perform.

<switch> <case> ... </case> ... <default> ... </default> </switch>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos, ypos, xend,
yend attributes

<annotation> element

Required (at least one). Each <case> element defines a condition that
may or may not be true.

<case> element

Optional. Specifies the action to take if no <case> condition is satisfied.
If present, must appear last in the <switch> element.

<default> element

Description
The <switch> element contains a sequence of one or more <case> elements and an optional <default> element.

When a <switch> element is executed, it evaluates each <case> condition in turn. These conditions are logical expressions
in the scripting language of the containing <process> element. If any expression evaluates to the integer value 1 (true),
then the contents of the corresponding <case> element are executed; otherwise the expression for the next <case> element
is evaluated.

If no <case> condition is true, the contents of the <default> element are executed.

As soon as one of <case> elements is executed, execution control leaves the surrounding <switch> statement. If no <case>
condition matches, control leaves the <switch> after the <default> activity executes.

If no <case> is true and there is no <default>, no activity results from the <switch> statement.

Activities within a <case> element can be any BPL activity, including <assign> elements as in the example below:

<switch name='Approved?'>
 <case name='No PrimeRate' condition='context.PrimeRate=""'>
 <assign name='Not Approved' property="response.IsApproved" value="0"/>
 </case>
 <case name='No Credit' condition='context.CreditRating=""'>
 <assign name='Not Approved' property="response.IsApproved" value="0"/>
 </case>
 <default name='Approved' >
 <assign name='Approved' property="response.IsApproved" value="1"/>
 <assign name='InterestRate'
 property="response.InterestRate"
 value="context.PrimeRate+10+(99*(1-(context.CreditRating/100)))">
 <annotation>
 <![CDATA[Copy InterestRate into response object.]]>
 </annotation>
 </assign>
 </default>
</switch>

Business Process and Data Transformation Language Reference 67

<switch>

<sync>
Wait for a response from one or more asynchronous requests.

<sequence> <call name="A" async="1" /> <call name="B" async="1" /> ... <sync
 calls="A,B" type="all" timeout="3600"/> </sequence>

Details
ValueDescriptionAttribute or Element

A comma-separated list of <call>
element names. This value can be
provided as a literal string, or by using
the @ indirection operator to refer to the
value of a context variable. See details
below.

Required. A list of the names of one
or more asynchronous <call>
elements that <sync> will wait for.

calls attribute

A Boolean value: 1 (true) or 0 (false).Optional. If true, the <sync> element
can “poll” repeatedly to detect
completion of an asynchronous call.
That is, you can <sync> repeatedly on
the same call. This feature is useful
when a call may take an indefinite time
to complete. The default allowresync
value is false.

allowresync attribute

A string of one or more characters; for
example “2003:10:19T10:10”.

Optional. Specifies the time, in
seconds, to wait for the responses, as
an expression that evaluates to an
XML xsd:dateTime value.

timeout attribute

A string: “all ” (the default) or “any”.Optional.type attribute

See “Common Attributes and
Elements.”

name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Description
A typical business process makes one or more requests to external systems. These requests are usually made asynchronously
to compensate for the fact that the external system may be slow to respond or occasionally unavailable. The <sync> element
provides an easy way to wait for a response from one or more asynchronous calls. It is used in conjunction with the <call>
element.

The behavior of the <sync> element is specified via the calls, timeout, and type attributes. The type attribute either has the
value “all” , which specifies that the <sync> should wait for a response from all calls, or “any”, which specifies that it
will only wait for the first response it receives (in this case, the remaining responses are discarded in the same manner as
an expired timeout).

The following BPL fragment makes a two asynchronous requests, A and B, and then uses the <sync> element to wait for
their responses (for up to one hour):

68 Business Process and Data Transformation Language Reference

BPL Elements

<sequence>
 <call name="A" async="1" />
 <call name="B" async="1" />
 <sync calls="A,B" type="all" timeout="3600" />
</sequence>

Any responses received after the timeout period are marked with a status of Discarded, and are not processed by the business
process. If no value is provided for a timeout, the <sync> element continues to wait until all responses are received,
regardless of the amount of time that passes. Meanwhile, however, the business process is saved to disk and the job in
which it was running is freed up to host other business processes while the <sync> element is waiting.

The following sample BPL <process> issues two calls, then waits for 5 seconds.

<process request="Demo.Loan.Msg.Application">
 <context>
 <property name="BankName" type="%String"/>
 <property name="IsApproved" type="%Boolean"/>
 <property name="InterestRate" type="%Numeric"/>
 <property name="Results" type="Demo.Loan.Msg.Approval" collection="list"/>
 <property name="Iterator" type="%String"/>
 <property name="ThisResult" type="Demo.Loan.Msg.Approval"/>
 </context>
 <sequence>
 <trace value='"received application for "_request.Name'/>
 <call name="BankUS" target="Demo.Loan.BankUS" async="1">
 <annotation>
 <![CDATA[Send an asynchronous request to Bank US.]]>
 </annotation>
 <request type="Demo.Loan.Msg.Application">
 <assign property="callrequest" value="request"/>
 </request>
 <response type="Demo.Loan.Msg.Approval">
 <assign property="context.Results"
 value="callresponse"
 action="append"/>
 </response>
 </call>

 <call name="BankSoprano" target="Demo.Loan.BankSoprano" async="1">
 <annotation>
 <![CDATA[Send an asynchronous request to Bank Soprano.]]>
 </annotation>
 <request type="Demo.Loan.Msg.Application">
 <assign property="callrequest" value="request"/>
 </request>
 <response type="Demo.Loan.Msg.Approval">
 <assign property="context.Results"
 value="callresponse"
 action="append"/>
 </response>
 </call>

 <call name="BankManana" target="Demo.Loan.BankManana" async="1">
 <annotation>
 <![CDATA[Send an asynchronous request to Bank Manana.]]>
 </annotation>
 <request type="Demo.Loan.Msg.Application">
 <assign property="callrequest" value="request"/>
 </request>
 <response type="Demo.Loan.Msg.Approval">
 <assign property="context.Results"
 value="callresponse"
 action="append"/>
 </response>
 </call>

 <sync name='Wait for Banks'
 calls="BankUS,BankSoprano,BankManana"
 type="all"
 timeout="5">
 <annotation>
 <![CDATA[Wait for responses from the banks. Wait up to 5 seconds.]]>
 </annotation>
 </sync>
 <trace value='"sync complete"'/>
 </sequence>
</process>

Whenever a <sync> element is executed, the BPL engine inserts the name of the <sync> element into the message header
so that it is visible in later Message Browser and Visual Trace displays.

Business Process and Data Transformation Language Reference 69

<sync>

Unique Names for <call> Elements

If you attempt to define a <call> element with the same name as another <call> element, the BPL editor displays an error
message and requires that you provide a unique name.

Indirection in the calls Attribute

The value of the calls attribute is a string. This string must provide a comma-separated list of <call> element names. The
string can be a literal value:

calls="BankUS,BankSoprano,BankManana"

Or the @ indirection operator can be used to access the value of a context variable that contains the appropriate string:

calls="@context.myListOfCalls"

syncresponses

There is an additional mechanism for dealing with responses received as a result of the <call> element.

Whenever the <sync> element is used, it fills a collection with the various responses it receives. This collection is a variable
in the business process execution context called syncresponses. The execution context also provides a integer variable
called synctimedout. The two variables synctimedout and syncresponses work together as follows:

DescriptionObject

syncresponses is a collection of response objects, keyed by the names of the <call>
activities being synchronized. Only completed calls are represented.You can retrieve a
response from syncresponses only after a <sync> and before the end of the current
<sequence>. Do so using the syntax syncresponses.GetAt("MyName") where the
relevant call was defined as <call name="MyName">

syncresponses

The synctimedout value is an integer. synctimedout indicates the outcome of a <sync>
activity after several calls.You can test the value of synctimedout after the <sync> and
before the end of the <sequence> that contains the calls and <sync>. synctimedout has
one of three values:

synctimedout

• If 0, no call timed out. All the calls had time to complete. This is also the value if the
<sync> activity had no timeout set.

• If 1, at least one call timed out. This means not all <call> activities completed before
the timeout.

• If 2, at least one call was interrupted before it could complete.

Generally you will test synctimedout for status and then retrieve the responses from
completed calls out of the syncresponses collection.

As soon as a <sync> activity executes, the syncresponses collection is cleared in preparation for new responses. As the
calls return, their responses go into the syncresponses collection. When the <sync> activity completes, syncresponses may
contain some or all of the responses that you were waiting for.

For example, suppose you <sync> on Call1 and Call2 with this syntax:

<sync type="all" timeout="60">

Suppose that Call1 returns within 60 seconds, but Call2 does not. At this point, syncresponses contains the response to
Call1, but not Call2. You can test the value of synctimedout to determine whether or not to expect the appropriate values
to be present in syncresponses.

70 Business Process and Data Transformation Language Reference

BPL Elements

Following a <sync> activity, you can access whatever responses have returned by using the name of the <call> activity as
a key. For a call defined as:

<call name="nameOfCall">

You would access the response using this syntax:

syncresponses.GetAt("nameOfCall")

Suppose the following sequence executes:

<sequence>
 <call name="A" async="1" />
 <call name="B" async="1" />
 <call name="C" async="1" />
 <sync calls="A,B,C" type="all" />
</sequence>

After the <sync> element completes, the syncresponses collection will contain references to three response objects, as follows:

• syncresponses.GetAt("A") = Response from A (if any)

• syncresponses.GetAt("B") = Response from B (if any)

• syncresponses.GetAt("C") = Response from C (if any)

If no responses were received, the syncresponses collection will be empty.

Note: For more information about the business process execution context, see the <assign> element in this book, and
see Developing BPL Processes.

syncresponses in Multiple Threads

When you use the <sync> element in conjunction with <flow>, be aware that there is a separate syncresponses collection
for each thread, including the primary thread in which the <process> itself executes. Therefore, in the course of a business
process there may be different syncresponses collections that go in and out of scope; each has relevance only in its imme-
diate <sequence> and not in any other.

The following example illustrates the use of synctimedout and syncresponses in three threads, the primary business process
thread and two additional threads created by a <flow>:

XData BPL
{
<process>
 <context>
 <property name="ResultsFromNorth" type="%String"/>
 <property name="ResultsFromSouth" type="%String"/>
 <property name="ResultsFromEast" type="%String"/>
 <property name="ResultsFromWest" type="%String"/>
 </context>
 <sequence>
 // In this context, syncresponses refers to the primary process thread
 <flow>
 // This flow runs two sequences (two threads) in parallel

 <sequence name="thread1">
 // In this context, syncresponses refers to results in thread1
 <call name="A" />
 <call name="B" />
 <sync calls="A,B" type="all" timeout="10" />
 // Did the synchronization time out before it finished?
 <if condition='synctimedout="1"'>
 <true>
 <trace value='"thread1 timeout: Call A or B did not return."' />
 </true>
 // If not, then the calls came back, so assign the results.
 <false>
 <assign property="context.ResultsFromEast"
 value='syncresponses.GetAt("A")'
 action="append"/>
 <assign property="context.ResultsFromWest"
 value='syncresponses.GetAt("B")'

Business Process and Data Transformation Language Reference 71

<sync>

 action="append"/>
 </false>
 </if>
 </sequence>

 <sequence name="thread2">
 // In this context, syncresponses refers to results in thread2
 <call name="C" />
 <call name="A" />
 <sync calls="C,A" type="all"/>
 // Assign the results
 <assign property="context.ResultsFromNorth"
 value='syncresponses.GetAt("C")'
 action="append"/>
 <assign property="context.ResultsFromSouth"
 value='syncresponses.GetAt("A")'
 action="append"/>
 </sequence>
 </flow>

 // In this context, syncresponses refers to the primary process thread
 <call name="E" />
 </sequence>
</process>
}

The <if> activity in this example has a condition that tests synctimedout against the integer value 1. synctimedout can have
the value 0, 1, or 2 as described in the documentation for <call>. If the two values are equal, this <if> condition receives
the integer value 1 and statements inside the <true> element are executed. Otherwise, statements inside the <false> element
are executed.

allowresync

The BPL business process can make the <call> and then <sync> on this call multiple times, with or without a timeout. The
<sync> allowresync attribute controls this behavior. If you set allowresync to 1 (true) this enables a subsequent <sync> on
the same <call>. You can do this repeatedly until the call completes. A value of 0 (false) for <sync> allowresync disallows
a subsequent <sync> on the same call. The default allowresync value is 0.

Suppose you have an asynchronous <call> A, a long-running activity whose response can be indefinitely delayed. Suppose
you <sync> on A with a timeout of 5. This <sync> returns immediately if A is complete, or returns in 5 seconds if A is not
complete but the timeout expires. Now, suppose you know that A can take an indefinite amount of time, but generally
returns without problems. That is, suppose A usually completes within 5 seconds, but sometimes takes over an hour, and
that the delay is acceptable when it occurs. In this case, you will want to check A frequently for completion, in case it does
complete in the usual time, but also allow subsequent <sync> activities on the same <call>, in case it takes longer to complete.

The following would be typical usage:

<sequence>
 <call name="A" async="1" />
 <sync call="A" timeout="5" allowresync="1" />
 <while condition='synctimedout=1'>
 <alert value="Waiting for call A to complete."/>
 <sync call="A" timeout="5" allowresync="1" />
 </while>
</sequence>

If a timeout is not specified in the <sync>, then it is important to check the synctimedout variable before each <sync>.
Otherwise the <sync> could be waiting for a call that has already completed.

Consecutive <sync> Timeout

Suppose you have multiple consecutive <sync> elements that refer to the same <call> element, and each <sync> has a
timeout value. Once the first <sync> has been satisfied, either because the <call> has returned or because the <sync> timeout
value has expired, the second <sync> element does not wait but instead completes immediately.

<sequence>
 <call name="A" async="1" />
 <sync name="Sync1" calls="A" type="all" timeout="60" />
 <sync name="Sync2" calls="A" type="all" timeout="300" />
</sequence>

72 Business Process and Data Transformation Language Reference

BPL Elements

<throw>
Throw a specific, named fault.

<scope> <throw fault='"MyFault"'/> ... <faulthandlers> <catch
fault='"MyFault"'> ... </catch> </faulthandlers> </scope>

Details
ValueDescriptionAttribute or Element

A string of 0 to 255 characters. If this is
an expression, it must use the scripting
language specified by the containing
<process> element.

Required. The name of the fault. It
can be a literal text string or an
expression to be evaluated.

fault

See “Common Attributes and
Elements.”

name, disabled, xpos, ypos,
xend, yend

<annotation> element

Description
When a <throw> statement executes, control immediately shifts to the <faulthandlers> block inside the same <scope>,
skipping all intervening statements after the <throw>. Inside the <faulthandlers> block, the program attempts to find a
<catch> block whose value attribute matches the fault string expression in the <throw> statement. This comparison is case-
sensitive. When you specify a fault string it needs the extra set of quotes to contain it, as shown below:

<throw fault='"thrown"'/>

If there is a <catch> block that matches the fault, the program executes the code within this <catch> block and then exits
the <scope>. The program resumes execution at the next statement following the closing </scope> element.

If a fault is thrown, and the corresponding <faulthandlers> block contains no <catch> block that matches the fault string,
control shifts from the <throw> statement to the <catchall> block inside <faulthandlers>. After executing the contents of
the <catchall> block, the program exits the <scope>. The program resumes execution at the next statement following the
closing </scope> element. It is good programming practice to ensure that there is always a <catchall> block inside every
<faulthandlers> block, to ensure that the program catches any unanticipated errors.

For details, see “BPL Error Handling Conventions” in Developing BPL Processes.

See Also
<catch>, <catchall>, <compensate>, <compensationhandlers>, <faulthandlers>, and <scope>.

Business Process and Data Transformation Language Reference 73

<throw>

<trace>
Write a message to the foreground Terminal window.

<trace value='"The time is: " & Now' />

Details
ValueDescriptionAttribute or Element

A string of one or more characters. May
be an expression or a literal string. If this
is an expression, it must use the
scripting language specified by the
containing <process> element.You can
also use virtual property syntax using
the {} convention.

Required. This is the text for the trace
message. It can be a literal text string
or an expression to be evaluated.

value attribute

See “Common Attributes and
Elements.”

name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Description
The <trace> element writes a message to the Terminal window. <trace> messages appear only if the BPL business process
that generates them has been configured to Run in Foreground mode.

Trace messages may be written to the InterSystems IRIS Event Log as well as to the console. A system administrator controls
this behavior by configuring a production from the Interoperability > Configure > Production page in the Management
Portal. If a BPL business process has the Log Trace Events option checked, it writes trace messages to the Event Log as
well as displaying them at the console. If a trace message is logged, its Event Log entry type is Trace.

The BPL <trace> element generates trace message with User priority; the result is the same as calling the $$$TRACE utility
from ObjectScript.

Note: For details, see “Adding Trace Elements” in the chapter “Programming in InterSystems IRIS” in Developing
Productions.

74 Business Process and Data Transformation Language Reference

BPL Elements

<transform>
Transform one object into another using a data transformation.

<transform class="MyApp.SAPtoJDE" target="context.xform" source="request" />

Details
ValueDescriptionAttribute or Element

The name of a data
transformation class.

Required. The name of the data transformation
class that will perform the data transformation.This
value can be provided as a literal string, or by using
the @ indirection operator to refer to the value of
a context variable. See details below.

class attribute

The name of a valid
property and object
in the execution
context.

Required. The target (output object) for this data
transformation. This is one of the objects in the
execution context, or a property of one of these
objects.

target attribute

The name of a valid
property and object
in the execution
context.

Required. The source (input object) for this data
transformation. This is one of the objects visible in
the current execution context or a property of one
of these objects.

source attribute

See “Common Attributes and Elements.”name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Description
The <transform> element lets you invoke a data transformation class from within a business process.

A data transformation class (a subclass of Ens.DataTransform) defines a method that takes an instance of an input object
and transforms it into an instance of an output object. The transform element invokes this method to automatically transform
an object of one type into another using the data transformation class specified by the class attribute.

The source attribute specifies the input object for the transformation. This is an object (or one of its object-valued properties)
visible within the business process execution context and should be of the input type expected by the specified data trans-
formation class.

The target attribute specifies the destination of the output object. This is also an object (or one of its object-valued properties)
visible within the business process execution context and should be of the output type expected by the specified data
transformation class.

Variables in the Execution Context

The <transform> element can refer to the following variables and their properties. Do not use variables not listed here.

Business Process and Data Transformation Language Reference 75

<transform>

PurposeVariable

The context object is a general-purpose data container for the business process. context has no
automatic definition. To define properties of this object, use the <context> element. That done,
you may refer to these properties anywhere inside the <process> element using dot syntax, as
in: context.Balance

context

The request object contains any properties of the original request message object that caused
this business process to be instantiated.You may refer to request properties anywhere inside
the <process> element using dot syntax, as in: request.UserID

request

The response object contains any properties that are required to build the final response message
object to be returned by the business process.You may refer to response properties anywhere
inside the <process> element using dot syntax, as in:response.IsApproved. Use the <assign>
element to assign values to these properties.

response

Note: There is more information about the business process execution context in documentation of the <assign> element.

Value of the class Attribute

While the <transform> element lets you invoke a data transformation class from within a business process, the data trans-
formation class itself must already be defined using the Data Transformation Language (DTL), a subset of BPL. For more
information about DTL, see the Data Transformation Language Reference.

Indirection in the class Attribute

The value of the class attribute is a string that identifies the package and class name of a DTL data transformation. The
string can be a literal value:

<transform class="MyApp.SAPtoJDE" target="context.xform" source="request" />

Or the @ indirection operator can be used to access the value of a context variable that contains the appropriate string:

<call class="@context.nextTransform" target="context.xform" source="request"/>

76 Business Process and Data Transformation Language Reference

BPL Elements

<true>
Perform a set of activities when the condition for an <if> element is true.

<if condition="1"> <true> ... </true> <false> ... </false> </if>

Details
DescriptionAttribute or Element

See “Common Attributes and Elements.”name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Optional. <true> may contain zero or more of the following elements in any
combination: <alert>, <assign>, <branch>, <break>, <call>, <code>, <continue>,
<delay>, <empty>, <flow>, <foreach>, <if>, <label>, <milestone>, <reply>, <rule>,
<scope>, <sequence>, <sql>, <switch>, <sync>, <throw>, <trace>, <transform>,
<until>, <while>, <xpath>, or <xslt>.

Other elements

Description
A <true> element is used within an <if> to contain elements that need to be executed if the condition is true.

Business Process and Data Transformation Language Reference 77

<true>

<until>
Perform activities repeatedly until a condition is true.

<until condition='context.IsApproved="1"'> ... </until>

Details
ValueDescriptionAttribute or Element

An expression that evaluates the
integer value 1 (if true) or 0 (if false).
This expression must use the
scripting language specified by the
containing <process> element.

Required. This expression is
evaluated at the end of each pass
through the activities in the <until>
element. Once true, it stops
execution of the <until> element.

condition attribute

See “Common Attributes and
Elements.”

name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Optional. <until> may contain zero
or more of the following elements in
any combination: <alert>, <assign>,
<branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>,
<flow>, <foreach>, <if>, <label>,
<milestone>, <reply>, <rule>,
<scope>, <sequence>, <sql>,
<switch>, <sync>, <throw>, <trace>,
<transform>, <until>, <while>,
<xpath>, or <xslt>.

Other elements

Description
The <until> element defines a sequence of activities that are repeatedly executed until a logical expression evaluates to the
integer value 1 (true). The expression is re-evaluated after each loop through the sequence.

To fine-tune loop execution, include <break> and <continue> elements within an <until> element. See the descriptions of
these elements for details.

78 Business Process and Data Transformation Language Reference

BPL Elements

<while>
Perform activities repeatedly as long as a condition is true.

<while condition='context.IsApproved="1"'> ... </while>

Details
ValueDescriptionAttribute or Element

An expression that evaluates to the
integer value 1 (if true) or 0 (if false).
This expression must use the scripting
language specified by the containing
<process> element.

Required. This expression is evaluated
before each pass through the activities
in the <while> element. Once false, it
stops execution of the <while> element.

condition attribute

See “Common Attributes and
Elements.”

name, disabled, xpos,
ypos, xend, yend
attributes

<annotation> element

Optional. <while> may contain zero or
more of the following elements in any
combination: <alert>, <assign>,
<branch>, <break>, <call>, <code>,
<continue>, <delay>, <empty>, <flow>,
<foreach>, <if>, <label>, <milestone>,
<reply>, <rule>, <scope>, <sequence>,
<sql>, <switch>, <sync>, <throw>,
<trace>, <transform>, <until>, <while>,
<xpath>, or <xslt>.

Other elements

Description
The <while> element defines a sequence of activities that are repeatedly executed as long as a logical expression evaluates
to the integer value 1 (true). The expression is re-evaluated before each loop through the sequence.

You can fine-tune loop execution by including <break> and <continue> elements within a <while> element. For example:

<while condition="0">

 //...do various things...

 <if condition="somecondition">
 <true>
 <break/>
 </true>
 </if>

 //...do various other things...

</while>

Business Process and Data Transformation Language Reference 79

<while>

<xpath>
Evaluate XPath expressions on a target XML document.

<xpath name='xpath' source="request.MetaDataXML"
property="context.Result" context="/staff/doc"
expression="name[@last='Marston']"/>

Details
ValueDescriptionAttribute or Element

A string of one or
more characters.

Required. An expression that yields a stream
containing the XML on which the XPath expressions
are to be performed. Typically the source attribute
will name a context or request property.

source attribute

A string of one or
more characters.

Required.The property (typically a context property)
in which to place the result of the evaluation.

property attribute

A string of one or
more characters.

Required. The document context.context attribute

A string of one or
more characters.

Required. The XPath expression.expression attribute

A string of 0 to 255
characters.

Optional. Specifies prefix mappings for the
document. This is a comma-delimited list of
prefix-to-namespace mappings. See details below.

prefixmappings attribute

A string of 0 to 255
characters.

Optional. The schema specification.schemaspec attribute

See “Common Attributes and Elements.”name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

Description
The <xslt> element allows a business process to evaluate XPath expressions on a target XML document.

When the <xpath> element executes, the source stream is processed into an XPath document and then the XPath expressions
are evaluated in sequence. The BPL runtime engine automatically manages the lifetime of the documents and caches them
to allowing processing to be as efficient as possible

Each prefixmappings entry is defined as a prefix, a space, and then the URI to which that prefix maps. This is especially
useful if the document defines a default namespace with the xmlns="http://somenamespaceuri" syntax, but does
not supply an explicit prefix mapping. The following prefixmappings string would map the myprefix prefix to the
http://somenamespaceuri URI. Note the space character in the string:

prefixmappings="myprefix http://somenamespaceuri"

The BPL <xpath> element is intended to support XPath expressions which yield a scalar value, that is a single piece of
text, number, date etc. It is not intended to deal with expressions that yield an XPath DOM. This means that if the expression
does yield a DOM, the target property will not be updated. DOM programming is beyond the scope of BPL. If your business
needs such processing, then the XPath should be performed in a code block or a call to a utility class.

80 Business Process and Data Transformation Language Reference

BPL Elements

See Also
<xslt>

Business Process and Data Transformation Language Reference 81

<xpath>

<xslt>
Execute an embedded XSLT transformation.

<xslt name='simon' xslurl="http://www.intersystems.com/transform.xsl"
source="context.a" target="context.b"> <parameters> <parameter name="surname"
 value="sez"/> </parameters> </xslt>

Details
ValueDescriptionAttribute or Element

A string of 0 to 255
characters.

Required. URI of the XSLT definition that controls the
transformation. The URI may begin with one of the
following strings: “file:” “http:” “url:” or “xdata:”

xslurl attribute

A string of 0 to 255
characters.

Required. Name of the source (stream) object.source attribute

A string of 0 to 255
characters.

Required. Name of the target (stream) objecttarget attribute

See “Common Attributes and Elements.”name, disabled, xpos, ypos,
xend, yend attributes

<annotation> element

An optional <parameters> element may appear. Inside
the <parameters> container, zero or more <parameter>
elements may appear. Each <parameter> element
defines an XSLT name-value pair to pass to the
stylesheet that controls the XSLT transformation.

<parameters> element

A string with a value
“1.0” or “2.0”.

Specifies whether the XSLT transformation uses XSLT
1.0 or 2.0.

xsltversion attribute

Description
The <xslt> element allows you to apply an XSLT transformation during a business process. The <xslt> element transforms
an input stream to an output stream via an arbitrary XSLT definition. The XSLT definition may be in an external file, or
it may be defined in a class in the same namespace as the BPL business process.

The source and target stream objects must be declared as properties of the context object for the business process. The
context object is a general-purpose data container for the business process. You may define context properties by providing
<context> and <property> elements at the beginning of the <process> element. That done, you may refer to these properties
anywhere inside the <process> element using dot syntax, as in: context.MyInputStream or
context.MyOutputStream

The xslurl string is a URI that identifies the location of the XSLT definition. The xslurl value may begin with one of the
following strings:

file:
http:
url:
xdata:

Where file:, http:, and url: have the standard meanings. An xdata: string takes this form:

xdata://PackageName.ClassName:XDataName

82 Business Process and Data Transformation Language Reference

BPL Elements

Where:

• PackageName.ClassName identifies a class in the same namespace as the BPL business process.

• XDataName is the name of an XData block within that class that contains the XSLT definition for this <xslt> statement.
This convention allows XSLT definitions to be stored inside InterSystems IRIS classes, as an efficient alternative to
storing them outside InterSystems IRIS in the local file system or on the Web.

If the XSLT requires parameters, include them in a <parameters> block within the <xslt> element.

See Also
<parameters> and <xpath>

Business Process and Data Transformation Language Reference 83

<xslt>

DTL Elements

This reference provides detailed information about each DTL element.

Tip: If you want to view or edit the XML for a DTL, edit the DTL using Studio and click on View other code.

Business Process and Data Transformation Language Reference 85

DTL <annotation>
Provide a descriptive comment for a DTL element.

<annotation> <![CDATA[Sends patient data from lab to CRM system.]]> </annotation>

Description
The <annotation> element allows you to associate a descriptive comment with a DTL element. An <annotation> must
appear as the first child of the element that it is annotating. For example:

<transform targetClass='Demo.DTL.ExampleTarget'
 sourceClass='Demo.DTL.ExampleSource'
 create='new'
 language='objectscript'>
 <annotation>
 <![CDATA[Implement current naming conventions.]]>
 </annotation>
 <trace value='"Convert from lowercase to uppercase"'/>
 <assign property='target.UpperCase'
 value='$ZCONVERT(source.LowerCase,"U")'
 action='set'>
 <annotation>This is a comment for the assign element</annotation>
 </assign>
</transform>

The previous example uses CDATA syntax around the annotation text. This convention is optional, but it lets you use line
breaks and special characters such as the apostrophe (') without worrying about XML escape sequences. The maximum
length of the <annotation> string is 32,767 characters, including the CDATA escape characters.

Also notice that the annotation for the assign element appears as a child immediately following the opening assign tag.

Most elements within DTL support <annotation> as a child element. This allows you to associate a descriptive comment
with a DTL element. Unlike BPL, which offers positional attributes for every element, <annotation> is the only child element
or attribute that most DTL elements have in common. If you use the <annotation> element, it must appear as the first child
of the element that it is annotating.

86 Business Process and Data Transformation Language Reference

DTL Elements

DTL <assign>
Assign a value to a property within an object.

<assign property="propertyname" value="expression" />

Attributes
ValueDescriptionAttribute

A string of one or more characters.Required. The property that is the target of this
assignment.

property

An ObjectScript expression that
provides a valid value for the
property.

Required. Provides a value for the property.value

One of the following values: set,
clear, remove, append, insert.
See the actions section for details.

Optional. If value is a collection property (list or array),
then use action to specify the type of assignment to
perform. The default is a set action.

action

A string of one or more characters.
This string is an expression that
evaluates to a key.

Optional, except in some cases when value is a
collection property (list or array). If so, then use this key
to specify the element upon which the assignment will
be performed.

key

Elements
PurposeElement

Optional. A text string that describes the <assign> element.<annotation>

Description
The DTL <assign> element is used from within a DTL <transform> element to specify a target property and an expression
whose value will be assigned to it. Generally, this expression involves values from the source object for the data transfor-
mation, but they may also be literal values. All properties involved in a DTL <assign> activity must be properties within
the source or target object for the data transformation.

The source and target objects are generally production message body objects, as described in the “Messages” chapter of
Developing Productions. These consist of a message header and a message body object.

Properties in the standard production message body can be data types, objects, or collections of either. Collection properties
are declared with either [Collection = list] or [Collection = array] in the class definition. You can
refer to the properties on the standard production message body using dot syntax as for any object property.

Properties in a virtual document require the unique syntax described in the following sections of the book Using Virtual
Documents in Productions:

• Virtual Property Paths

• Syntax Guide for Virtual Property Paths

Business Process and Data Transformation Language Reference 87

DTL <assign>

Actions of the <assign> Element

There are several types of DTL <assign> operation, as specified by the optional action attribute. Aside from the default of
set, these variations are intended to handle assignments involving collection properties within a standard production message
body. The following table describes the actions of the <assign> element.

ExampleDescriptionAssign
action

The following statement sets the value of the
target BankName property:

<assign property='target.BankName'
value='process.BankName' action='set'/>

Sets the value of the specified property to that
of the value attribute. Note that the value attribute
contains an expression and can itself refer to
an object or property of an object.

set

Adds the target element to the end of a list
property

append

The following statement clears the contents of
the collection property List:

<assign property='target.List'
action='clear' />

Clears the contents of the specified collection
property. The value and key attributes are
ignored. (Applies to collection properties only.)

clear

The following statement inserts a value into the
array collection property Array using the key
primary:

<assign
 property='target.Array'
 action='insert'
 key='primary'
 value='source.Primary'
 />

Inserts a value into the specified collection
property. If the key attribute is present the new
value is inserted after the position (an integer)
specified by key; otherwise, the new item is
inserted at the end. (Applies to list collection
properties only.)

insert

Removes an item from the specified collection
property.The value attribute is ignored. (Applies
to collection properties only.)

remove

Note: Virtual documents do not use any action value other than set.

The set action sets the value of the specified property to that of the value attribute. Note that the value attribute contains an
expression and can itself refer to an object or property of an object:

<assign property='target.SSN' value='source.SSN' />

If the target property is an array collection, then the value of the key attribute specifies an item in the array, otherwise the
key attribute is ignored.

If the target property is a collection and the value attribute specifies a collection of the same type, then the collection contents
are copied into the target collection:

<assign property='target.List' value='source.List' />

The default action for the assign element is the set operation; if action is not specified, then the assign specifies a set oper-
ation.

88 Business Process and Data Transformation Language Reference

DTL Elements

Objects and Object References

If you <assign> from the top-level source object or any object property of another object as your source, the target receives
a cloned copy of the object rather than the object itself. This prevents inadvertent sharing of object references and saves
the effort of generating cloned objects yourself. However, if you want to share object references between source and target
you must <assign> from the source to an intermediate temporary variable, and then <assign> from that variable to the target.

Wholesale Copy

To create a target object that is an exact copy of the source, do not use:

<assign property='target' value='source' />

Instead use the create='copy' attribute in the containing <transform> element.

The create option may have one of the following values:

• new — Create a new object of the target type, before executing the elements within the data transformation. This is
the default.

• copy — Create a copy of the source object to use as the target object, before executing the elements within the transform.

• existing — Use an existing object, provided by the caller of the data transformation, as the target object.

Business Process and Data Transformation Language Reference 89

DTL <assign>

DTL <code>
Execute lines of custom code.

<code> <![CDATA[target.Name = source.FirstName & " " & source.LastName]]> </code>

Elements
PurposeElement

Optional. A text string that describes the <code> element.<annotation>

Description
The DTL <code> element executes one or more lines of user-written code within a DTL data transformation. You can use
the <code> element to perform special tasks that are difficult to express using the DTL elements. Any properties referenced
by the <code> element must be properties within the source or target object for the data transformation.

The scripting language for a DTL <code> element is specified by the language attribute of the containing <transform>
element. The value should be objectscript. Any expressions found in the data transformation, as well as lines of code
within <code> elements, must use the specified language.

For further information, see the following books:

• Using ObjectScript

• ObjectScript Reference

Typically a developer wraps the contents of a <code> element within a CDATA block to avoid having to worry about
escaping special XML characters such as the apostrophe (') or the ampersand (&) . For example:

<code>
 <![CDATA[target.Name = source.FirstName & " " & source.LastName]]>
</code>

In order to ensure that execution of a data transformation can be suspended and restored, you should follow these guidelines
when using the <code> element:

• The execution time should be short; custom code should not tie up the general execution of the data transformation.

• Do not allocate any system resources (such as taking out locks or opening devices) without releasing them within the
same <code> element.

• If a <code> element starts a transaction, make sure that the same <code> element ends the transactions in all possible
scenarios; otherwise, the transaction can be left open indefinitely. This could prevent other processing or can cause
significant downtime.

90 Business Process and Data Transformation Language Reference

DTL Elements

DTL <false>
Perform a set of activities when the condition for an <if> element is false.

<if condition="0"> <true> ... </true> <false> ... </false> </if>

Attributes
None.

Elements
PurposeElement

Optional. A text string that describes the <false> element.<annotation>

Optional. <false> may contain zero or more of the following elements in any combination:
<assign>, <code>, <foreach>, <if>, <sql>, <subtransform>, or <trace>.

Most
activities

Description
A <false> element is used within an <if> to contain elements that need to be executed if the condition is false.

Business Process and Data Transformation Language Reference 91

DTL <false>

DTL <foreach>
Define a sequence of activities to be executed iteratively.

<foreach property="P1" key="K1"> ... </foreach>

Attributes
ValueDescriptionAttribute

A string of one or
more characters.

Required. The collection property (list or array) to iterate over. It must
be the name of a valid object and property in the execution context.

property

A string of one or
more characters.

Required. The index used to iterate through the collection. It must be a
name of a valid object and property in the execution context. It is
assigned a value for each element in the collection.

key

Elements
PurposeElement

Optional. A text string that describes the <foreach> element.<annotation>

Optional. <foreach> may contain zero or more of the following elements in any combination:
<assign>, <code>, <foreach>, <if>, <sql>, <subtransform>, or <trace>.

Most
activities

Description
The <foreach> element defines a sequence of activities that are executed iteratively, once for every element that exists
within a specified collection property. If the element is null, the sequence is not executed. The sequence is executed if the
element has an empty value, that is, the separators are there but there is no value between them, but is not executed for a
null value, that is, the message is terminated before the field is specified.

For example:

<foreach key='i' property='target.{PID:3()}'>
 <assign property='target.{PID:3(i).4}' value='"001"' action='set'/>
 </foreach>

Or:

<foreach key='key' property='source.{PID:PatientIDInternalID()}'>
 <if condition='source.{PID:PatientIDInternalID(key).identifiertypecode}="PAS"'>
 <true>
 <assign property='target.{PID:PatientIdentifierList(key).identifiertypecode}'
 value='"MR"'
 action='set'/>
 </true>
 </if>
 <if condition='source.{PID:PatientIDInternalID(key).identifiertypecode}="GMS"'>
 <true>
 <assign property='target.{PID:PatientIdentifierList(key).identifiertypecode}'
 value='"MC"'
 action='set'/>
 <assign property='target.{PID:PatientIdentifierList(key).assigningfacility}'
 value='"AUSHIC"'
 action='set'/>
 </true>
 </if>
</foreach>

92 Business Process and Data Transformation Language Reference

DTL Elements

The properties referenced by the <foreach> element must be properties in the source or target object for the data transfor-
mation.

Nested <foreach>

Nesting of <foreach> elements is allowed.

The next top explains how this <foreach> syntax can be streamlined.

Shortcuts for <foreach>

When you are working with a document-based message or “virtual document” type the <assign> statement offers a
shortcut notation that iterates through every instance of a repeating field within a document structure. This means you do
not actually need to set up <foreach> loops with 'i' 'j' and 'k' just for the purpose of handling repeating fields. Instead, you
can use a much simpler notation with empty parentheses.

The parentheses shortcut works for a nested <foreach> as well.

Avoiding <STORE> Errors with Large Messages

As you loop over segments in a message or object collections, they are brought into memory. If these objects consume all
the memory assigned to the current process, you may get unexpected errors.

To avoid this, remove the objects from memory after you no longer need them. For example, if you are processing many
segments in a <foreach> loop, you can call the commitSegmentByPath method on both the source and target as the last
step in the loop. Similarly, for object collections, use the %UnSwizzleAt method.

If you cannot make code changes, a temporary workaround is to increase the amount of memory allocated for each process.
You can change this by setting the bbsiz parameter on the Advanced Memory Settings page in the Management Portal. Note
that this requires a system restart and should only occur after consulting with your system administrator.

Business Process and Data Transformation Language Reference 93

DTL <foreach>

DTL <if>
Evaluate a condition and perform one action if true, another if false.

<if condition="1"> <true> ... </true> <false> ... </false> </if>

Attributes
ValueDescriptionAttribute

An expression that
evaluates to the
integer value 1 (if true)
or 0 (if false).

Required. An ObjectScript expression that, if true, causes the
contents of the <true> element to execute. If false, the contents of
the <false> element are executed.

condition

Elements
PurposeElement

Optional. A text string that describes the <if> element.<annotation>

Optional. If the condition is true, activities inside the <true> element are executed.<true>

Optional. If the condition is false, activities inside the <false> element are executed.<false>

Description
The <if> element evaluates an expression and, depending on its value, executes one of two sets of activities (one if the
expression evaluates to a true value, the other if it evaluates to a false value).

The <if> element may contain a <true> element and a <false> element which define the actions to execute if the expression
evaluates to true or false, respectively.

If both <true> and <false> elements are provided, they may appear within the <if> element in any order.

If the condition is true and there is no <true> element, or if the condition is false and there is no <false> element, no activity
results from the <if> element.

94 Business Process and Data Transformation Language Reference

DTL Elements

DTL <sql>
Execute an embedded SQL SELECT statement within a data transformation.

<sql><![CDATA[SELECT SSN INTO :context.SSN FROM MyApp.PatientTable WHERE PatID
 = :request.PatID]]> </sql>

Elements
PurposeElement

Optional. A text string that describes the <sql> element.<annotation>

Description
The DTL <sql> element executes an arbitrary embedded SQL SELECT statement from within a DTL <transform> element.

To use the <sql> element effectively, keep the following tips in mind:

• Always use the fully qualified name of the table, including both the SQL schema name and table name, as in:

MyApp.PatientTable

Where MyApp is the SQL schema name and PatientTable is the table name.

• The contents of the <sql> element must contain a valid embedded SQL SELECT statement.

It is convenient to place the SQL query within a CDATA block so that you do not have to worry about escaping special
XML characters.

• Any tables listed in the SQL query’s FROM clause must either be stored within the local InterSystems IRIS database
or linked to an external relational database using the SQL Gateway.

• Within the INTO and WHERE clauses of the SQL query, you can refer to a property of the source or target object by
placing a : (colon) in front of the variable name. For example:

<sql><![CDATA[
 SELECT Name INTO :target.Name
 FROM MainFrame.EmployeeRecord
 WHERE SSN = :source.SSN AND City = :source.Home.City
]]>
</sql>

• Only the first row returned by the query will be used. Make sure that your WHERE clause correctly specifies the
desired row.

Business Process and Data Transformation Language Reference 95

DTL <sql>

DTL <subtransform>
Invoke another data transformation.

<subtransform class='class-name' targetObj='target-value}'
 sourceObj='source-value'/>

Attributes
ValueDescriptionAttribute

The full package and class
name.

Required. Name of the class that contains the data transfor-
mation to be invoked. This class must be in the same
namespace as the class that invokes it.

Often, class is a DTL data transformation defined using a
DTL <transform> element, as shown in the examples in this
topic.

Alternatively, class can identify a custom subclass of
Ens.DataTransform that implements the Transform method
and does not use DTL.

class

Property name. For virtual
documents and their
segments, use virtual property
syntax.

Required. Identifies the property being transformed. This
may be an object property or a virtual document property.
Generally it is a property of the source object identified by
the containing <transform> element’s sourceClass and (for
virtual documents) sourceDocType. In this case it is refer-
enced using dot syntax as follows:

source.property or source.{propertyPath}

sourceObject

Property name. For virtual
documents and their
segments, use virtual property
syntax.

Required. Identifies the property into which the transformed
value will be written. This may be an object property or a
virtual document property. Generally it is a property of the
target object identified by the containing <transform> ele-
ment’s targetClass and (for virtual documents)
targetDocType.In this case it is referenced using dot syntax
as follows:

target.property or target.{propertyPath}

In the case of a subtransform with Create as new or copy, it
is not necessary to have a pre-existing target object.

targetObject

Elements
PurposeElement

Optional. A text string that describes the <subtransform> element.<annotation>

96 Business Process and Data Transformation Language Reference

DTL Elements

Description
The <subtransform> element invokes another data transformation. Making a call to <subtransform> allows the containing
<transform> element to invoke other data transformations to complete segments of its work. This allows developers greater
flexibility in maintaining a suite of reusable DTL transformation code.

Before the <subtransform> element was available, every DTL <transform> stood alone. In order to write multiple DTL
transformations that contained an identical sequence of actions, it was necessary to copy and paste the corresponding sections
of code from one class into another. Now, each of these DTL classes can replace repeated lines with a <subtransform>
element that invokes another class to performs the desired sequence.

The source or target objects for a <subtransform> may be ordinary InterSystems IRIS objects, virtual document message
objects, or virtual document segment objects representing an individual segment within a virtual document message. The
<subtransform> is especially important for interface developers working with Electronic Data Interchange (EDI) formats,
where each message or document may contain many independent segments that need to be transformed. Having the <sub-
transform> available means you can create a reusable library of segment transformations that you can call as needed,
without duplicating code in the calling transformation.

For virtual documents and their segments, you must use virtual property syntax, such as the {} curly bracket syntax in the
following examples. The property path inside the brackets must refer to a particular segment, not to a field within a segment
or to a group of segments. For background information, see the book Using Virtual Documents in Productions; details are
available in the section “Virtual Property Path.”

Business Process and Data Transformation Language Reference 97

DTL <subtransform>

DTL <trace>
Write a message to the foreground Terminal window.

<trace value='"The time is: " & Now' />

Attributes
ValueDescriptionAttribute

A string of one or more
characters. May be a literal
string or an expression.

Required. This is the text for the trace message. It can be
a literal text string or an ObjectScript expression to be
evaluated.

value

Elements
PurposeElement

Optional. A text string that describes the <trace> element.<annotation>

Description
The <trace> element writes a message to the Terminal window. <trace> messages appear only if the business host that
invokes the DTL data transformation has been configured to Run in Foreground mode.

Trace messages may be written to the InterSystems IRIS event log as well as to the console. A system administrator controls
this behavior from the Management Portal Configuration page. If the business host that invokes the DTL data transformation
has the Log Trace Events option checked, it writes trace messages to the event log as well as displaying them at the console.
If a trace message is logged, its event log entry type is Trace.

The DTL <trace> element generates trace message with User priority; the result is the same as calling the $$$TRACE utility
from ObjectScript.

Note: For details, see the sections “Adding Trace Elements” in the “Programming in InterSystems IRIS” chapter of
Developing Productions.

98 Business Process and Data Transformation Language Reference

DTL Elements

DTL <transform>
Transform an object of one type into an object of another type.

<transform sourceClass="MyApp.SAPtoJDE" targetClass="AlsoMine.JDE" />

Attributes
ValueDescriptionAttribute

The name of a valid object and
property.

Required. The class name of the input object for the
data transformation.

sourceClass

The name of a valid object and
property.

Required. The class name of the output object for the
data transformation.

targetClass

A string.Optional. When the input object is a virtual document,
this string identifies its DocType.

sourceDocType

A string.Optional. When the output object is a virtual document,
this string identifies its DocType.

targetDocType

objectscriptOptional. Should be objectscriptlanguage

This can take one of the
following values: new, copy,
or existing as detailed in the
following description.

Optional.The create option desired for the target object.
If not specified, the default is new.

create

Elements
PurposeElement

Optional. A text string that describes the <transform> element.<annotation>

Optional. <transform> may contain zero or more of the following elements in any
combination: <assign>, <code>, <foreach>, <if>, <sql>, <subtransform>, or <trace>.

Most activities

Description
The <transform> element is the outermost element for a DTL document. All the other DTL elements are contained within
a <transform> element. Within the <transform>, the two objects have the names source and target, respectively. For
example:

<transform targetClass='Demo.DTL.ExampleTarget'
 sourceClass='Demo.DTL.ExampleSource'
 create='new'
 language='objectscript'>

 <trace value='"Convert from lowercase to uppercase"'/>
 <assign property='target.UpperCase'
 value='$ZCONVERT(source.LowerCase,"U")'
 action='set'/>

</transform>

Source and Target Objects

The sourceClass and targetClass may identify standard production message classes, each of which contains a set of prop-
erties. If so, the sourceDocType and targetDocType attributes are not needed.

Business Process and Data Transformation Language Reference 99

DTL <transform>

Alternatively, the sourceClass and targetClass may identify virtual documents. In this case the sourceDocType and
targetDocType attributes are needed to tell InterSystems IRIS which message structure to expect in the virtual document.

Values for the create Option

The create option for the target object may have one of the following values:

• new — Create a new object of the target type, before executing the elements within the data transformation. This is
the default.

• copy — Create a copy of the source object to use as the target object, before executing the elements within the transform.

• existing — Use an existing object, provided by the caller of the data transformation, as the target object.

100 Business Process and Data Transformation Language Reference

DTL Elements

DTL <true>
Perform a set of activities when the condition for an <if> element is true.

<if condition="1"> <true> ... </true> <false> ... </false> </if>

Attributes
None.

Elements
PurposeElement

Optional. A text string that describes the <true> element.<annotation>

Optional. <true> may contain zero or more of the following elements in any combination:
<assign>, <code>, <foreach>, <if>, <sql>, <subtransform>, or <trace>.

Most activities

Description
A <true> element is used within an <if> to contain elements that need to be executed if the condition is true.

Business Process and Data Transformation Language Reference 101

DTL <true>

	Table of Contents
	About This Book
	BPL Elements
	Common Attributes and Elements
	<alert>
	<assign>
	<branch>
	<break>
	<call>
	<case>
	<catch>
	<catchall>
	<code>
	<compensate>
	<compensationhandlers>
	<context>
	<continue>
	<default>
	<delay>
	<empty>
	<false>
	<faulthandlers>
	<flow>
	<foreach>
	<if>
	<label>
	<milestone>
	<parameters>
	<process>
	<property>
	<reply>
	<request>
	<response>
	<rule>
	<sequence>
	<scope>
	<sql>
	<switch>
	<sync>
	<throw>
	<trace>
	<transform>
	<true>
	<until>
	<while>
	<xpath>
	<xslt>

	DTL Elements
	DTL <annotation>
	DTL <assign>
	DTL <code>
	DTL <false>
	DTL <foreach>
	DTL <if>
	DTL <sql>
	DTL <subtransform>
	DTL <trace>
	DTL <transform>
	DTL <true>

